
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3333911/publications.pdf Version: 2024-02-01

ANDREI N LUDAS

#	Article	IF	CITATIONS
1	Exploring protein-protein interactions at the proteome level. Structure, 2022, 30, 462-475.	1.6	13
2	RpuS/R Is a Novel Two-Component Signal Transduction System That Regulates the Expression of the Pyruvate Symporter MctP in Sinorhizobium fredii NGR234. Frontiers in Microbiology, 2022, 13, 871077.	1.5	1
3	A topological refactoring design strategy yields highly stable granulopoietic proteins. Nature Communications, 2022, 13, .	5.8	4
4	Archaeal Connectase is a specific and efficient protein ligase related to proteasome β subunits. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
5	The breakthrough in protein structure prediction. Biochemical Journal, 2021, 478, 1885-1890.	1.7	39
6	Editorial overview: Sequences and topology: â€~paths from sequence to structure'. Current Opinion in Structural Biology, 2021, 68, vi-viii.	2.6	2
7	Highâ€accuracy protein structure prediction in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1687-1699.	1.5	220
8	An astonishing wealth of new proteasome homologs. Bioinformatics, 2021, 37, 4694-4703.	1.8	3
9	Gram-negative outer-membrane proteins with multiple β-barrel domains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
10	Integrative Structural Biology in the Era of Accurate Structure Prediction. Journal of Molecular Biology, 2021, 433, 167127.	2.0	36
11	Assessing the utility of <scp>CASP14</scp> models for molecular replacement. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1752-1769.	1.5	47
12	Computational models in the service of Xâ€ray and <scp>cryoâ€</scp> electron microscopy structure determination. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1633-1646.	1.5	37
13	Target highlights in <scp>CASP14</scp> : Analysis of models by structure providers. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1647-1672.	1.5	27
14	The VCBS superfamily forms a third supercluster of \hat{I}^2 -propellers that includes tachylectin and integrins. Bioinformatics, 2021, 36, 5618-5622.	1.8	5
15	Native display of a huge homotrimeric protein fiber on the cell surface after precise domain deletion. Journal of Bioscience and Bioengineering, 2020, 129, 412-417.	1.1	2
16	The evolution of the huntingtin-associated protein 40 (HAP40) in conjunction with huntingtin. BMC Evolutionary Biology, 2020, 20, 162.	3.2	11
17	A secreted fungal histidine―and alanineâ€rich protein regulates metal ion homeostasis and oxidative stress. New Phytologist, 2020, 227, 1174-1188.	3.5	35
18	Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. Current Protocols in Bioinformatics, 2020, 72, e108.	25.8	458

#	Article	IF	CITATIONS
19	Design of novel granulopoietic proteins by topological rescaffolding. PLoS Biology, 2020, 18, e3000919.	2.6	8
20	Structural diversity of coiled coils in protein fibers of the bacterial cell envelope. International Journal of Medical Microbiology, 2019, 309, 351-358.	1.5	5
21	Histones predate the split between bacteria and archaea. Bioinformatics, 2019, 35, 2349-2353.	1.8	17
22	Characterization of MCU-Binding Proteins MCUR1 and CCDC90B — Representatives of a Protein Family Conserved in Prokaryotes and Eukaryotic Organelles. Structure, 2019, 27, 464-475.e6.	1.6	19
23	Auto-regulation of Rab5 GEF activity in Rabex5 by allosteric structural changes, catalytic core dynamics and ubiquitin binding. ELife, 2019, 8, .	2.8	26
24	Structural diversity of oligomeric β-propellers with different numbers of identical blades. ELife, 2019, 8, .	2.8	21
25	Adenylate cyclases: Receivers, transducers, and generators of signals. Cellular Signalling, 2018, 46, 135-144.	1.7	58
26	From ancestral peptides to designed proteins. Current Opinion in Structural Biology, 2018, 48, 103-109.	2.6	46
27	A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. Journal of Molecular Biology, 2018, 430, 2237-2243.	2.0	1,956
28	The Origin of Mitochondria-Specific Outer Membrane β-Barrels from an Ancestral Bacterial Fragment. Genome Biology and Evolution, 2018, 10, 2759-2765.	1.1	16
29	Asymmetric protein design from conserved supersecondary structures. Journal of Structural Biology, 2018, 204, 380-387.	1.3	13
30	Chemical Ligand Space of Cereblon. ACS Omega, 2018, 3, 11163-11171.	1.6	43
31	An Interface-Driven Design Strategy Yields a Novel, Corrugated Protein Architecture. ACS Synthetic Biology, 2018, 7, 2226-2235.	1.9	11
32	The ancestral KH peptide at the root of a domain family with three different folds. Bioinformatics, 2018, 34, 3961-3965.	1.8	12
33	Characterization of a novel signal transducer element intrinsic to class IIIa/b adenylate cyclases and guanylate cyclases. FEBS Journal, 2017, 284, 1204-1217.	2.2	25
34	Ribosomal proteins as documents of the transition from unstructured (poly)peptides to folded proteins. Journal of Structural Biology, 2017, 198, 74-81.	1.3	42
35	N@ <i>a</i> and N@ <i>d</i> : Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces. ACS Chemical Biology, 2017, 12, 528-538.	1.6	34
36	Coiled Coils – A Model System for the 21st Century. Trends in Biochemical Sciences, 2017, 42, 130-140.	3.7	173

#	Article	IF	CITATIONS
37	Characterization of the CrbS/R Two-Component System in Pseudomonas fluorescens Reveals a New Set of Genes under Its Control and a DNA Motif Required for CrbR-Mediated Transcriptional Activation. Frontiers in Microbiology, 2017, 8, 2287.	1.5	13
38	The Structure and Topology of $\hat{I}\pm$ -Helical Coiled Coils. Sub-Cellular Biochemistry, 2017, 82, 95-129.	1.0	80
39	Some of the most interesting <scp>CASP</scp> 11 targets through the eyes of their authors. Proteins: Structure, Function and Bioinformatics, 2016, 84, 34-50.	1.5	16
40	An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature, 2016, 537, 107-111.	13.7	135
41	The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Research, 2016, 44, W410-W415.	6.5	369
42	The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 913-923.	1.2	68
43	Structural Basis for Toughness and Flexibility in the C-terminal Passenger Domain of an Acinetobacter Trimeric Autotransporter Adhesin. Journal of Biological Chemistry, 2016, 291, 3705-3724.	1.6	41
44	α/β coiled coils. ELife, 2016, 5, .	2.8	27
45	Origin of a folded repeat protein from an intrinsically disordered ancestor. ELife, 2016, 5, .	2.8	43
46	A domain dictionary of trimeric autotransporter adhesins. International Journal of Medical Microbiology, 2015, 305, 265-275.	1.5	50
47	Structure and Evolution of N-domains in AAA Metalloproteases. Journal of Molecular Biology, 2015, 427, 910-923.	2.0	23
48	The Thalidomide-Binding Domain of Cereblon Defines the CULT Domain Family and Is a New Member of the β-Tent Fold. PLoS Computational Biology, 2015, 11, e1004023.	1.5	34
49	STAC—A New Domain Associated with Transmembrane Solute Transport and Two-Component Signal Transduction Systems. Journal of Molecular Biology, 2015, 427, 3327-3339.	2.0	17
50	Structural Dynamics of the Cereblon Ligand Binding Domain. PLoS ONE, 2015, 10, e0128342.	1.1	22
51	A vocabulary of ancient peptides at the origin of folded proteins. ELife, 2015, 4, e09410.	2.8	199
52	A Trimeric Lipoprotein Assists in Trimeric Autotransporter Biogenesis in Enterobacteria. Journal of Biological Chemistry, 2014, 289, 7388-7398.	1.6	28
53	What I cannot create, I do not understand. Science, 2014, 346, 1455-1456.	6.0	7
54	Thalidomide mimics uridine binding to an aromatic cage in cereblon. Journal of Structural Biology, 2014, 188, 225-232.	1.3	54

#	Article	IF	CITATIONS
55	Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation. Journal of Structural Biology, 2014, 186, 376-379.	1.3	46
56	A soluble mutant of the transmembrane receptor Af1503 features strong changes in coiled-coil periodicity. Journal of Structural Biology, 2014, 186, 357-366.	1.3	15
57	Axial helix rotation as a mechanism for signal regulation inferred from the crystallographic analysis of the E. coli serine chemoreceptor. Journal of Structural Biology, 2014, 186, 349-356.	1.3	50
58	Prokaryotic Ancestry of Eukaryotic Protein Networks Mediating Innate Immunity and Apoptosis. Journal of Molecular Biology, 2014, 426, 1568-1582.	2.0	23
59	Archaean Proteasome. , 2013, , 3666-3671.		0
60	The First Prokaryotic Trehalose Synthase Complex Identified in the Hyperthermophilic Crenarchaeon Thermoproteus tenax. PLoS ONE, 2013, 8, e61354.	1.1	18
61	β-Propeller Blades as Ancestral Peptides in Protein Evolution. PLoS ONE, 2013, 8, e77074.	1.1	77
62	The Archaeal Proteasome Is Regulated by a Network of AAA ATPases. Journal of Biological Chemistry, 2012, 287, 39254-39262.	1.6	42
63	Delineation of structural domains and identification of functionally important residues in DNA repair enzyme exonuclease VII. Nucleic Acids Research, 2012, 40, 8163-8174.	6.5	13
64	Structure and function of tripeptidyl peptidase II, a giant cytosolic protease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 237-245.	1.1	22
65	Complete fiber structures of complex trimeric autotransporter adhesins conserved in enterobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20907-20912.	3.3	57
66	HAMP Domain-mediated Signal Transduction Probed with a Mycobacterial Adenylyl Cyclase as a Reporter. Journal of Biological Chemistry, 2012, 287, 1022-1031.	1.6	27
67	Mechanism of Regulation of Receptor Histidine Kinases. Structure, 2012, 20, 56-66.	1.6	87
68	Crystal structure of a dimeric archaeal Cleavage and Polyadenylation Specificity Factor. Journal of Structural Biology, 2011, 173, 191-195.	1.3	31
69	Evolutionary Relationships of Microbial Aromatic Prenyltransferases. PLoS ONE, 2011, 6, e27336.	1.1	73
70	Bioinformatics of the TULIP domain superfamily. Biochemical Society Transactions, 2011, 39, 1033-1038.	1.6	48
71	The Mechanisms of HAMP-Mediated Signaling in Transmembrane Receptors. Structure, 2011, 19, 378-385.	1.6	86
72	The Structure of E.Âcoli IgG-Binding Protein D Suggests a General Model for Bending and Binding in Trimeric Autotransporter Adhesins. Structure, 2011, 19, 1021-1030.	1.6	66

#	Article	IF	CITATIONS
73	A galaxy of folds. Protein Science, 2010, 19, 124-130.	3.1	71
74	The use of FLPâ€mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus <i>Ustilago maydis</i> . New Phytologist, 2010, 187, 957-968.	3.5	93
75	A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. EMBO Journal, 2010, 29, 1176-1191.	3.5	70
76	SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay. Genes and Development, 2010, 24, 2440-2450.	2.7	63
77	Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics, 2010, 26, 1927-1931.	1.8	192
78	Measuring the conformational space of square four-helical bundles with the program samCC. Journal of Structural Biology, 2010, 170, 226-235.	1.3	36
79	A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins. Journal of Structural Biology, 2010, 170, 236-245.	1.3	41
80	Comprehensive Analysis of HAMP Domains: Implications for Transmembrane Signal Transduction. Journal of Molecular Biology, 2010, 397, 1156-1174.	2.0	79
81	A coiled-coil motif that sequesters ions to the hydrophobic core. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16950-16955.	3.3	77
82	The GD box: A widespread noncontiguous supersecondary structural element. Protein Science, 2009, 18, 1961-1966.	3.1	15
83	Crystal Structure of SpoVT, the Final Modulator of Gene Expression during Spore Development in Bacillus subtilis. Journal of Molecular Biology, 2009, 386, 962-975.	2.0	18
84	Structure and Activity of the N-Terminal Substrate Recognition Domains in Proteasomal ATPases. Molecular Cell, 2009, 34, 580-590.	4.5	116
85	HHomp—prediction and classification of outer membrane proteins. Nucleic Acids Research, 2009, 37, W446-W451.	6.5	86
86	Two unique membrane-bound AAA proteins from Sulfolobus solfataricus. Biochemical Society Transactions, 2009, 37, 118-122.	1.6	1
87	Evolution of the βâ€propeller fold. Proteins: Structure, Function and Bioinformatics, 2008, 71, 795-803.	1.5	128
88	The head of <i>Bartonella</i> adhesin A is crucial for host cell interaction of <i>Bartonella henselae</i> . Cellular Microbiology, 2008, 10, 2223-2234.	1.1	66
89	Cradle-loop barrels and the concept of metafolds in protein classification by natural descent. Current Opinion in Structural Biology, 2008, 18, 358-365.	2.6	57
90	The long coming of computational structural biology. Journal of Structural Biology, 2008, 163, 254-257.	1.3	7

#	Article	IF	CITATIONS
91	Structure of the Head of the Bartonella Adhesin BadA. PLoS Pathogens, 2008, 4, e1000119.	2.1	70
92	Domain annotation of trimeric autotransporter adhesins—daTAA. Bioinformatics, 2008, 24, 1251-1256.	1.8	98
93	Functional Mapping of YadA- and Ail-Mediated Binding of Human Factor H to <i>Yersinia enterocolitica</i> Serotype O:3. Infection and Immunity, 2008, 76, 5016-5027.	1.0	55
94	The <i>Sulfolobus solfataricus</i> AAA protein Sso0909, a homologue of the eukaryotic ESCRT Vps4 ATPase. Biochemical Society Transactions, 2008, 36, 94-98.	1.6	30
95	A Conserved Glycine Residue of Trimeric Autotransporter Domains Plays a Key Role in <i>Yersinia</i> Adhesin A Autotransport. Journal of Bacteriology, 2007, 189, 9011-9019.	1.0	67
96	A new expression system for protein crystallization using trimeric coiled-coil adaptors. Protein Engineering, Design and Selection, 2007, 21, 11-18.	1.0	36
97	Gene Duplication of the Eight-stranded β-Barrel OmpX Produces a Functional Pore: A Scenario for the Evolution of Transmembrane β-Barrels. Journal of Molecular Biology, 2007, 366, 1174-1184.	2.0	86
98	prlF and yhaV Encode a New Toxin–Antitoxin System in Escherichia coli. Journal of Molecular Biology, 2007, 372, 894-905.	2.0	87
99	On the origin of the histone fold. BMC Structural Biology, 2007, 7, 17.	2.3	45
100	Salmonella Pathogenicity Island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cellular Microbiology, 2007, 9, 1834-1850.	1.1	163
101	TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. BMC Bioinformatics, 2007, 8, 2.	1.2	194
102	A CTP-Dependent Archaeal Riboflavin Kinase Forms a Bridge in the Evolution of Cradle-Loop Barrels. Structure, 2007, 15, 1577-1590.	1.6	29
103	Inherent chaperone-like activity of aspartic proteases reveals a distant evolutionary relation to double-I´ barrel domains of AAA-ATPases. Protein Science, 2007, 16, 644-653.	3.1	11
104	The HAMP Domain Structure Implies Helix Rotation in Transmembrane Signaling. Cell, 2006, 126, 929-940.	13.5	351
105	Purification of the YadA membrane anchor for secondary structure analysis and crystallization. International Journal of Biological Macromolecules, 2006, 39, 3-9.	3.6	52
106	Comparative analysis of coiled-coil prediction methods. Journal of Structural Biology, 2006, 155, 140-145.	1.3	150
107	Characterization of AMA, a new AAA protein from Archaeoglobus and methanogenic archaea. Journal of Structural Biology, 2006, 156, 130-138.	1.3	5
108	Model structure of the prototypical non-fimbrial adhesin YadA of Yersinia enterocolitica. Journal of Structural Biology, 2006, 155, 154-161.	1.3	65

#	Article	IF	CITATIONS
109	Modeling AAA+ ring complexes from monomeric structures. Journal of Structural Biology, 2006, 156, 230-243.	1.3	58
110	Classification of AAA+ proteins. Journal of Structural Biology, 2006, 156, 2-11.	1.3	135
111	Trimeric autotransporter adhesins: variable structure, common function. Trends in Microbiology, 2006, 14, 264-270.	3.5	275
112	Common Evolutionary Origin of Swapped-Hairpin and Double-Psi Î ² Barrels. Structure, 2006, 14, 1489-1498.	1.6	36
113	HHsenser: exhaustive transitive profile search using HMM-HMM comparison. Nucleic Acids Research, 2006, 34, W374-W378.	6.5	72
114	The MPI Bioinformatics Toolkit for protein sequence analysis. Nucleic Acids Research, 2006, 34, W335-W339.	6.5	247
115	AbrB-like Transcription Factors Assume a Swapped Hairpin Fold that Is Evolutionarily Related to Double-Psi β Barrels. Structure, 2005, 13, 919-928.	1.6	78
116	The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research, 2005, 33, W244-W248.	6.5	3,246
117	REPPERrepeats and their periodicities in fibrous proteins. Nucleic Acids Research, 2005, 33, W239-W243.	6.5	118
118	The Structure of α-Helical Coiled Coils. Advances in Protein Chemistry, 2005, 70, 37-38.	4.4	594
119	Bartonella Adhesin A Mediates a Proangiogenic Host Cell Response. Journal of Experimental Medicine, 2004, 200, 1267-1278.	4.2	193
120	PhyloGenie: automated phylome generation and analysis. Nucleic Acids Research, 2004, 32, 5231-5238.	6.5	98
121	Thermoplasma acidophilum TAA43 is an archaeal member of the eukaryotic meiotic branch of AAA ATPases. Biological Chemistry, 2004, 385, 1105-11.	1.2	7
122	WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 2004, 23, 9314-9325.	2.6	322
123	Coiled coils meet the chaperone world. Trends in Biochemical Sciences, 2004, 29, 455-458.	3.7	35
124	Phylogenetic analysis of AAA proteins. Journal of Structural Biology, 2004, 146, 2-10.	1.3	188
125	CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics, 2004, 20, 3702-3704.	1.8	641
126	Historical review: Another 50th anniversary – new periodicities in coiled coils. Trends in Biochemical Sciences, 2003, 28, 679-685.	3.7	134

#	Article	IF	CITATIONS
127	More than the sum of their parts: On the evolution of proteins from peptides. BioEssays, 2003, 25, 837-846.	1.2	229
128	Bioinformatic analysis of ClpS, a protein module involved in prokaryotic and eukaryotic protein degradation. Journal of Structural Biology, 2003, 141, 77-83.	1.3	57
129	Barentsz, a New Component of the Staufen-Containing Ribonucleoprotein Particles in Mammalian Cells, Interacts with Staufen in an RNA-Dependent Manner. Journal of Neuroscience, 2003, 23, 5778-5788.	1.7	88
130	AAA proteins. Current Opinion in Structural Biology, 2002, 12, 746-753.	2.6	319
131	Fold recognition without folds. Protein Science, 2002, 11, 1575-1579.	3.1	20
132	On the Evolution of Protein Folds: Are Similar Motifs in Different Protein Folds the Result of Convergence, Insertion, or Relics of an Ancient Peptide World?. Journal of Structural Biology, 2001, 134, 191-203.	1.3	276
133	Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature, 2001, 411, 940-944.	13.7	211
134	Systematic Identification of Selective Essential Genes in Helicobacter pylori by Genome Prioritization and Allelic Replacement Mutagenesis. Journal of Bacteriology, 2001, 183, 1259-1268.	1.0	151
135	Evolution of Two-Component Signal Transduction. Molecular Biology and Evolution, 2000, 17, 1956-1970.	3.5	269
136	The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature, 2000, 407, 508-513.	13.7	390
137	The Janus Face of the Archaeal Cdc48/p97 Homologue VAT: Protein Folding versus Unfolding. Biological Chemistry, 1999, 380, 1049-62.	1.2	77
138	Structure and mechanism of ATP-dependent proteases. Current Opinion in Chemical Biology, 1999, 3, 584-591.	2.8	68
139	Fold recognition using sequence and secondary structure information. Proteins: Structure, Function and Bioinformatics, 1999, 37, 141-148.	1.5	43
140	Novel molecular architecture of the multimeric archaeal PEP-synthase homologue (MAPS) from Staphylothermus marinus 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 290, 347-361.	2.0	14
141	What makes a thermophile?. Trends in Microbiology, 1998, 6, 349-351.	3.5	5
142	Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. Journal of Molecular Biology, 1998, 277, 13-25.	2.0	107
143	The thermosome: alternating Î \pm and Î ² -subunits within the chaperonin of the archaeon Thermoplasma acidophilum. Journal of Molecular Biology, 1997, 267, 142-149.	2.0	56
144	Cloning, sequencing and expression of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum. FEBS Letters, 1997, 404, 263-268.	1.3	59

#	Article	IF	CITATIONS
145	Self-compartmentalizing proteases. Trends in Biochemical Sciences, 1997, 22, 399-404.	3.7	223
146	Eubacterial proteasomes. Molecular Biology Reports, 1997, 24, 125-131.	1.0	48
147	Classification of tyrosine kinases fromDictyostelium discoideumwith two distinct, complete or incomplete catalytic domains. FEBS Letters, 1996, 395, 286-292.	1.3	28
148	Hyperthermostable Surface Layer Protein Tetrabrachion from the ArchaebacteriumStaphylothermus marinus: Evidence for the Presence of a Right-handed Coiled Coil Derived from the Primary Structure. Journal of Molecular Biology, 1996, 257, 1031-1041.	2.0	115
149	[30] Prediction and analysis of coiled-coil structures. Methods in Enzymology, 1996, 266, 513-525.	0.4	539
150	A hyperthermostable protease of the subtilisin family bound to the surface layer of the Archaeon Staphylothermus marinus. Current Biology, 1996, 6, 739-749.	1.8	71
151	A circular permutation event in the evolution of the SLH domain?. Molecular Microbiology, 1996, 20, 897-898.	1.2	31
152	Autocatalytic processing of the 20S proteasome. Nature, 1996, 382, 468-470.	13.7	231
153	The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Current Biology, 1995, 5, 766-774.	1.8	190
154	Structural features of archaebacterial and eukaryotic proteasomes. Molecular Biology Reports, 1995, 21, 11-20.	1.0	26
155	A Mouse Ig Î ^e Domain of Very Unusual Framework Structure Loses Function when Converted to the Consensus. Journal of Biological Chemistry, 1995, 270, 12446-12451.	1.6	6
156	Tetrabrachion: A Filamentous Archaebacterial Surface Protein Assembly of Unusual Structure and Extreme Stability. Journal of Molecular Biology, 1995, 245, 385-401.	2.0	112
157	Model Structure of the Ompα Rod, a Parallel Four-stranded Coiled Coil from the Hyperthermophilic EubacteriumThermotoga maritima. Journal of Molecular Biology, 1995, 248, 180-189.	2.0	58
158	The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease. FEBS Letters, 1995, 359, 173-178.	1.3	48
159	Proteasome sequences in eubacteria. Trends in Biochemical Sciences, 1994, 19, 533-534.	3.7	67
160	Predicted secondary structure of the 20 S proteasome and model structure of the putative peptide channel. FEBS Letters, 1994, 354, 45-49.	1.3	18
161	Folding and trimerization of clathrin subunits at the triskelion hub. Cell, 1992, 68, 899-910.	13.5	152
162	Do G protein subunits associate via a three-stranded coiled coil?. FEBS Letters, 1992, 314, 105-108.	1.3	54

#	Article	IF	CITATIONS
163	New β-Propellers Are Continuously Amplified From Single Blades in all Major Lineages of the β-Propeller Superfamily. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1