Hangjia Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3332644/publications.pdf

Version: 2024-02-01

		94433	91884
133	5,579 citations	37	69
papers	citations	h-index	g-index
122	122	122	7101
133	133	133	7101
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mesoporous Ti0.5Cr0.5N for trace H2S detection with excellent long-term stability. Journal of Hazardous Materials, 2022, 423, 127193.	12.4	9
2	Integrating trace amounts of Pd nanoparticles into Mo ₃ N ₂ nanobelts for an improved hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2022, 24, 771-777.	2.8	12
3	Carbon-Encapsulated Cobalt Phosphide Catalyst for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the Electrochemical Society, 2022, 169, 024509.	2.9	1
4	Boosting Oxygen Reduction for Highâ€Efficiency H ₂ O ₂ Electrosynthesis on Oxygenâ€Coordinated CoNC Catalysts. Small, 2022, 18, e2200730.	10.0	25
5	Oxygen Release and Incorporation Behaviors Influenced by A-Site Cation Order/Disorder in LaCa ₂ Fe ₃ O ₉ with Unusually High Valence Fe ^{3.67+} . Chemistry of Materials, 2022, 34, 345-350.	6.7	4
6	Co ₄ N–WN _{<i>x</i>} composite for efficient piezocatalytic hydrogen evolution. Dalton Transactions, 2022, 51, 7127-7134.	3.3	9
7	MOF-Derived Porous Ternary Nickel Iron Nitride Nanocube as a Functional Catalyst toward Water Splitting Hydrogen Evolution for Solar to Chemical Energy Conversion. ACS Applied Energy Materials, 2022, 5, 6155-6162.	5.1	11
8	High-density catalytic heterostructures strung by buried-in carbon tube network as monolithic holey host for endurable Li-S batteries. Chemical Engineering Journal, 2022, 446, 137294.	12.7	17
9	Spin engineering of single-site metal catalysts. Innovation(China), 2022, 3, 100268.	9.1	6
10	Anti-perovskite metal carbides: A new family of promising electrocatalysts for oxygen reduction in alkaline solution. Materials Research Bulletin, 2021, 133, 111014.	5,2	8
11	pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism. Talanta, 2021, 221, 121621.	5.5	15
12	Interface engineering of mesoporous triphasic cobalt–copper phosphides as active electrocatalysts for overall water splitting. Sustainable Energy and Fuels, 2021, 5, 1366-1373.	4.9	10
13	Mesoporous titanium niobium nitrides supported Pt nanoparticles for highly selective and sensitive formaldehyde sensing. Journal of Materials Chemistry A, 2021, 9, 19840-19846.	10.3	14
14	Nitrogen, sulfur co-doped carbon coated zinc sulfide for efficient hydrogen peroxide electrosynthesis. Dalton Transactions, 2021, 50, 5416-5419.	3.3	6
15	Titanium Nitride-Supported Platinum with Metal–Support Interaction for Boosting Photocatalytic H ₂ Evolution of Indium Sulfide. ACS Applied Materials & amp; Interfaces, 2021, 13, 7238-7247.	8.0	40
16	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie, 2021, 133, 6635-6640.	2.0	22
17	MOF Embedded and Cu Doped CeO2 Nanostructures as Efficient Catalyst for Adipic Acid Production: Green Catalysis. Catalysts, 2021, 11, 304.	3.5	16
18	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie - International Edition, 2021, 60, 6561-6566.	13.8	66

#	Article	IF	CITATIONS
19	Recent Advances in Transition Metal Nitrideâ€Based Materials for Photocatalytic Applications. Advanced Functional Materials, 2021, 31, 2100553.	14.9	80
20	Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials. Nanomaterials, 2021, 11, 1236.	4.1	17
21	Co3Mo3Nâ€"An efficient multifunctional electrocatalyst. Innovation(China), 2021, 2, 100096.	9.1	26
22	Ni3N-V2O3 enables highly efficient 5-(Hydroxymethyl) furfural oxidation enabling membrane free hydrogen production. Chemical Engineering Journal, 2021, 415, 128864.	12.7	27
23	Integrated sensing array of the perovskite-type LnFeO3 (LnËŁa, Pr, Nd, Sm) to discriminate detection of volatile sulfur compounds. Journal of Hazardous Materials, 2021, 413, 125380.	12.4	22
24	Intrinsic Electron Localization of Metastable MoS ₂ Boosts Electrocatalytic Nitrogen Reduction to Ammonia. Advanced Materials, 2021, 33, e2007509.	21.0	96
25	Facile Construction of Carbon Encapsulated of Earthâ€Abundant Metal Sulfides for Oxygen Electrocatalysis. ChemElectroChem, 2021, 8, 3533-3537.	3.4	6
26	Supporting nickel on vanadium nitride for comparable hydrogen evolution performance to platinum in alkaline solution. Journal of Materials Chemistry A, 2021, 9, 19669-19674.	10.3	19
27	Oxygen Coordination on Fe–N–C to Boost Oxygen Reduction Catalysis. Journal of Physical Chemistry Letters, 2021, 12, 517-524.	4.6	20
28	Ternary adsorbent photocatalyst hybrid (APH) nanomaterials for improved abstraction of tetracycline from water. Separation Science and Technology, 2020, 55, 2623-2641.	2.5	7
29	Experimental and Theoretical Insights of MoS 2 /Mo 3 N 2 Nanoribbonâ€Electrocatalysts for Efficient Hydrogen Evolution Reaction. ChemCatChem, 2020, 12, 122-128.	3.7	10
30	Orange Peel Derived Câ€dots Decorated CuO Nanorods for the Selective Monitoring of Dopamine from Deboned Chicken. Electroanalysis, 2020, 32, 11-18.	2.9	23
31	Molten Salts–Assisted Fabrication of Fe, S, and N Coâ€Doped Carbon as Efficient Oxygen Reduction Reaction Catalyst. Energy Technology, 2020, 8, 1900896.	3.8	4
32	<i>In situ</i> synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Advances, 2020, 10, 1281-1286.	3.6	9
33	Zirconium nitride catalysts surpass platinum for oxygen reduction. Nature Materials, 2020, 19, 282-286.	27.5	293
34	Dualâ€Metal Interbonding as the Chemical Facilitator for Singleâ€Atom Dispersions. Advanced Materials, 2020, 32, e2003484.	21.0	90
35	Interface catalysis by Pt nanocluster@Ni ₃ N for bifunctional hydrogen evolution and oxygen evolution. Materials Chemistry Frontiers, 2020, 4, 2665-2672.	5.9	33
36	High-Performance Supercapacitor Electrode Obtained by Directly Bonding 2D Materials: Hierarchal MoS2 on Reduced Graphene Oxide. Frontiers in Materials, 2020, 7, .	2.4	35

#	Article	IF	CITATIONS
37	Highly Localized C–N2 Sites for Efficient Oxygen Reduction. ACS Catalysis, 2020, 10, 9366-9375.	11.2	21
38	Cobalt Nanoparticles Modified Single-Walled Titanium Carbonitride Nanotube Derived from Solid-Solid Separation for Oxygen Reduction Reaction in Alkaline Solution. Electrocatalysis, 2020, 11, 579-592.	3.0	3
39	Nickel–Iron Nitride–Nickel Sulfide Composites for Oxygen Evolution Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41464-41470.	8.0	44
40	FeNi ₃ –FeNi ₃ N – a high-performance catalyst for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 6245-6250.	4.9	5
41	Ordered mesoporous transition metal nitrides prepared through hard template nanocasting and rapid nitridation process. Journal of Alloys and Compounds, 2020, 838, 155375.	5.5	19
42	A size tunable bimetallic nickel-zinc nitride as a multi-functional co-catalyst on nitrogen doped titania boosts solar energy conversion. Dalton Transactions, 2020, 49, 4887-4895.	3.3	3
43	Flowerâ€like FeS Coated with Heteroatom (S,N)â€Doped Carbon as Highly Active and Durable Oxygen Reduction Electrocatalysts. ChemElectroChem, 2020, 7, 2433-2439.	3.4	6
44	Recent Advances in Nanocasting Cobalt-Based Mesoporous Materials for Energy Storage and Conversion. Electrocatalysis, 2020, 11, 465-484.	3.0	10
45	Dual-doping of ruthenium and nickel into Co ₃ O ₄ for improving the oxygen evolution activity. Materials Chemistry Frontiers, 2020, 4, 1390-1396.	5.9	26
46	Fe ₃ C cluster-promoted single-atom Fe, N doped carbon for oxygen-reduction reaction. Physical Chemistry Chemical Physics, 2020, 22, 7218-7223.	2.8	17
47	Mesoporous Ternary Nitrides of Earth-Abundant Metals as Oxygen Evolution Electrocatalyst. Nano-Micro Letters, 2020, 12, 79.	27.0	63
48	Ultra″ow Loading of Au Clusters on Nickel Nitride Efficiently Boosts Photocatalytic Hydrogen Production with Titanium Dioxide. ChemCatChem, 2020, 12, 2752-2759.	3.7	9
49	Metal organic framework-derived porous Fe2N nanocubes by rapid-nitridation for efficient photocatalytic hydrogen evolution. Materials Advances, 2020, 1, 1161-1167.	5.4	22
50	Multifunctional hosts of Zinc sulfide coated carbon nanotubes for lithium sulfur batteries. SN Applied Sciences, 2020, 2, 1.	2.9	3
51	A Surfaceâ€Oxideâ€Rich Activation Layer (SOAL) on Ni ₂ Mo ₃ N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 18036-18041.	13.8	77
52	A Surfaceâ€Oxideâ€Rich Activation Layer (SOAL) on Ni 2 Mo 3 N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 18192-18197.	2.0	4
53	Chromium-titanium nitride as an efficient co-catalyst for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 15774-15781.	10.3	34
54	<i>In situ</i> growth of free-standing perovskite hydroxide electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2020, 8, 5919-5926.	10.3	21

#	Article	IF	Citations
55	Three-Dimensional Mesoporous Phosphide–Spinel Oxide Heterojunctions with Dual Function as Catalysts for Overall Water Splitting. ACS Applied Energy Materials, 2020, 3, 1684-1693.	5.1	43
56	Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors. Nano-Micro Letters, 2020, 12, 20.	27.0	73
57	Nanoheterostructures of Partially Oxidized RuNi Alloy as Bifunctional Electrocatalysts for Overall Water Splitting. ChemSusChem, 2020, 13, 2739-2744.	6.8	23
58	Sandwichâ€like Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 12227-12236.	2.0	3
59	Ruthenium Triazine Composite: A Good Match for Increasing Hydrogen Evolution Activity through Contact Electrification. Advanced Energy Materials, 2020, 10, 2000067.	19.5	52
60	Nitridation of CoWO ₄ /CdS Nanocomposite Formed Metal Nitrides Assisting Efficiently Photocatalytic Hydrogen Evolution. ACS Omega, 2020, 5, 9969-9976.	3.5	9
61	Sandwichâ€like Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 12129-12138.	13.8	130
62	Geometric Structure and Electronic Polarization Synergistically Boost Hydrogen Evolution Kinetics in Alkaline Medium. Journal of Physical Chemistry Letters, 2020, 11, 3436-3442.	4.6	18
63	Physically Adsorbed Metal Ions in Porous Supports as Electrocatalysts for Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1909889.	14.9	32
64	Communication—Fe/FeNi3 Embedded in Nitrogen-Doped Carbon Nanotubes as Bifunctional Oxygen Electrocatalysts. Journal of the Electrochemical Society, 2020, 167, 146504.	2.9	2
65	First-principles study of magnetism in some novel MXene materials. RSC Advances, 2020, 10, 44430-44436.	3.6	11
66	Conductive Holey MoO ₂ –Mo ₃ N ₂ Heterojunctions as Job-Synergistic Cathode Host with Low Surface Area for High-Loading Li–S Batteries. ACS Nano, 2019, 13, 10049-10061.	14.6	150
67	A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. Npj Computational Materials, 2019, 5, .	8.7	480
68	Single-Step Formation of Ni Nanoparticle-Modified Graphene–Diamond Hybrid Electrodes for Electrochemical Glucose Detection. Sensors, 2019, 19, 2979.	3.8	18
69	Mechanochemical synthesis of multi-site electrocatalysts as bifunctional zinc–air battery electrodes. Journal of Materials Chemistry A, 2019, 7, 19355-19363.	10.3	53
70	Nickel Hydroxide with Structural Defects for Sensitive Detection of Pb(II) and Cd(II) Ions in Aqueous Media. Journal of the Electrochemical Society, 2019, 166, B1330-B1334.	2.9	3
71	Gold Nanoclusterâ€Decorated Nickel Nitride as Stable Electrocatalyst for Oxygen Evolution Reaction in Alkaline Media. ChemElectroChem, 2019, 6, 5744-5749.	3.4	8
72	Ordered Mesoporous Cobalt–Nickel Nitride Prepared by Nanocasting for Oxygen Evolution Reaction Electrocatalysis. Advanced Materials Interfaces, 2019, 6, 1900960.	3.7	57

#	Article	IF	CITATIONS
73	Three-Dimensional Hierarchically Ternary Iron Tungsten Nitride Nanosheets with Slight Ratio of Nickel Modulation for Oxygen Evolution Reaction. Nano, 2019, 14, 1950089.	1.0	3
74	Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H2O2 released from cancer cells. Mikrochimica Acta, 2019, 186, 127.	5.0	35
75	Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes. Nanoscale Advances, 2019, 1, 1413-1420.	4.6	54
76	Solid–Solid Separation Approach for Preparation of Carbon-Supported Cobalt Carbide Nanoparticle Catalysts for Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 3662-3670.	5.0	10
77	Oxygen-Defective Ultrathin BiVO ₄ Nanosheets for Enhanced Gas Sensing. ACS Applied Materials & Discourse (1988) According to the Materials (1988) According to the Mat	8.0	81
78	Nickelâ€Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3941-3954.	6.8	150
79	ZnO-Reduced Graphene Oxide Composites Sensitized with Graphitic Carbon Nitride Nanosheets for Ethanol Sensing. ACS Applied Nano Materials, 2019, 2, 2734-2742.	5.0	84
80	Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward. Electrochemical Energy Reviews, 2019, 2, 252-276.	25. 5	119
81	Hierarchical Co3O4@NiMoO4 core-shell nanowires for chemiresistive sensing of xylene vapor. Mikrochimica Acta, 2019, 186, 222.	5.0	26
82	A dual emission nanocomposite prepared from copper nanoclusters and carbon dots as a ratiometric fluorescent probe for sulfide and gaseousÂH2S. Mikrochimica Acta, 2019, 186, 258.	5.0	30
83	Prussian blue derived Fe ₂ N for efficiently improving the photocatalytic hydrogen evolution activity of g-C ₃ N ₄ nanosheets. Catalysis Science and Technology, 2019, 9, 2571-2577.	4.1	32
84	Tungstenâ€Nitrideâ€Coated Carbon Nanospheres as a Sulfur Host for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 2074-2079.	3.4	16
85	High Oxidation Resistance of CVD Graphene-Reinforced Copper Matrix Composites. Nanomaterials, 2019, 9, 498.	4.1	16
86	Manganese-doped zinc oxide hollow balls for chemiresistive sensing of acetone vapors. Mikrochimica Acta, 2019, 186, 44.	5.0	11
87	Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Progress in Solid State Chemistry, 2019, 53, 1-26.	7.2	50
88	Adsorption Behaviors and Phase Equilibria for Clathrate Hydrates of Sulfur- and Nitrogen-Containing Small Molecules. Journal of Physical Chemistry C, 2019, 123, 2691-2702.	3.1	10
89	Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction. Journal of Colloid and Interface Science, 2019, 536, 42-52.	9.4	32
90	Highly integrated nanocomposites of RGO/TiO ₂ nanotubes for enhanced removal of microbes from water. Environmental Technology (United Kingdom), 2019, 40, 2567-2576.	2.2	13

#	Article	IF	Citations
91	Hierarchical Ni3ZnN Hollow Microspheres as Stable Non-Noble Metal Electrocatalysts for Oxygen Reduction Reactions. Electrocatalysis, 2018, 9, 452-458.	3.0	13
92	MoS ₂ â€QDâ€Based Dualâ€Model Photoluminescence Sensing Platform for Effective Determination of Al ³⁺ and Fe ³⁺ Simultaneously in Various Environment. ChemistrySelect, 2018, 3, 2326-2331.	1.5	19
93	Coordination Polymer-Derived Multishelled Mixed Ni–Co Oxide Microspheres for Robust and Selective Detection of Xylene. ACS Applied Materials & Interfaces, 2018, 10, 15314-15321.	8.0	64
94	Goldâ€Clusterâ€Based Dualâ€Emission Nanocomposite Film as Ratiometric Fluorescent Sensing Paper for Specific Metal Ion. Particle and Particle Systems Characterization, 2018, 35, 1700471.	2.3	19
95	RedÂemitting and highly stable carbon dots with dual response to pHÂvalues and ferric ions. Mikrochimica Acta, 2018, 185, 83.	5.0	94
96	Formation mechanism of highly dispersed semi-embedded ruthenium nanoparticles in porous carbon matrix determined by in situ temperature-programmed infrared spectroscopy. Chinese Journal of Catalysis, 2018, 39, 146-156.	14.0	6
97	Yellow-emitting carbon-dots-impregnated carboxy methyl cellulose/poly-vinyl-alcohol and chitosan: stable, freestanding, enhanced-quenching Cu ²⁺ -ions sensor. Journal of Materials Chemistry C, 2018, 6, 4508-4515.	5.5	51
98	Morphology-controlled synthesis of TiO ₂ /MoS ₂ nanocomposites with enhanced visible-light photocatalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 145-152.	6.0	40
99	Holey Sheets of Interconnected Carbon-Coated Nickel Nitride Nanoparticles as Highly Active and Durable Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 6774-6780.	5.1	28
100	Largeâ€Scale Synthesis of Flexible, Stable, and Transparent MoS ₂ Quantum Dotsâ€Polyvinyl Alcohol Sensing Film. Particle and Particle Systems Characterization, 2018, 35, 1800189.	2.3	3
101	A novel porous Mo ₃ N ₂ /MoO ₃ hybrid nanobelt as supercapacitor electrode material. Nano Futures, 2018, 2, 045001.	2.2	10
102	Graphene-wrapped nitrogen-doped hollow carbon spheres for high-activity oxygen electroreduction. Materials Chemistry Frontiers, 2018, 2, 1489-1497.	5.9	19
103	Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. Journal of Colloid and Interface Science, 2018, 527, 230-240.	9.4	56
104	Synthesis and application of nano-structured metal nitrides and carbides: A review. Progress in Solid State Chemistry, 2018, 50, 1-15.	7.2	104
105	Atomically Dispersed Fe, N Co-Doped Ordered Mesoporous Carbon for Non-Enzymatic Hydrogen Peroxide Sensing. Journal of the Electrochemical Society, 2018, 165, H348-H352.	2.9	12
106	Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. Journal of Materials Chemistry A, 2018, 6, 12091-12097.	10.3	88
107	Crucial Role of Donor Density in the Performance of Oxynitride Perovskite LaTiO ₂ N for Photocatalytic Water Oxidation. ChemSusChem, 2017, 10, 930-937.	6.8	19
108	In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. Journal of Materials Chemistry A, 2017, 5, 6164-6169.	10.3	149

#	Article	IF	Citations
109	Three-dimensional carbon nanofiber derived from bacterial cellulose for use in a Nafion matrix on a glassy carbon electrode for simultaneous voltammetric determination of trace levels of $Cd(II)$ and $Pb(II)$. Mikrochimica Acta, 2017, 184, 2759-2766.	5.0	25
110	Microwave-assisted synthesis of multimetal oxygen-evolving catalysts. Electrochemistry Communications, 2017, 81, 116-119.	4.7	15
111	Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy, 2017, 35, 9-16.	16.0	289
112	Identification of active sites for hydrogenation over Ru/SBA-15 using in situ Fourier-transform infrared spectroscopy. Chinese Journal of Catalysis, 2017, 38, 1597-1602.	14.0	14
113	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie, 2017, 129, 13988-13992.	2.0	88
114	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie - International Edition, 2017, 56, 13800-13804.	13.8	409
115	Protic salt-based nitrogen-doped mesoporous carbon for simultaneous electrochemical detection of Cd(ii) and Pb(ii). RSC Advances, 2017, 7, 36929-36934.	3.6	4
116	Amine coupled ordered mesoporous (Co–N) co-doped TiO ₂ : a green photocatalyst for the selective aerobic oxidation of thioether. Catalysis Science and Technology, 2017, 7, 4182-4192.	4.1	12
117	Clustered-Microcapsule-Shaped Microporous Carbon-Coated Sulfur Composite Synthesized via in Situ Oxidation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44512-44518.	8.0	9
118	A novel synthetic route to cathode materials for Liâ \in "S batteries: from organic sulfides to sulfur/nitrogenous carbon composites. Journal of Materials Chemistry A, 2017, 5, 16796-16802.	10.3	20
119	Mesoporous WN/WO3-Composite Nanosheets for the Chemiresistive Detection of NO2 at Room Temperature. Inorganics, 2016, 4, 24.	2.7	8
120	Low Workingâ€Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites. Small, 2016, 12, 3128-3133.	10.0	57
121	Luminescent properties and sensing performance of a carbon quantum dot encapsulated mesoporous silica/polyacrylonitrile electrospun nanofibrous membrane. Journal of Materials Science, 2016, 51, 6801-6811.	3.7	29
122	A mesoporous Ni ₃ N/NiO composite with a core–shell structure for room temperature, selective and sensitive NO ₂ gas sensing. RSC Advances, 2016, 6, 42917-42922.	3.6	6
123	Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties. RSC Advances, 2016, 6, 72791-72802.	3.6	43
124	Designed formation through a metal organic framework route of ZnO/ZnCo ₂ O ₄ hollow coreâ€"shell nanocages with enhanced gas sensing properties. Nanoscale, 2016, 8, 16349-16356.	5.6	152
125	Effect of nitrogen substitution on the structural and magnetic ordering transitions of NiCr ₂ O ₄ . RSC Advances, 2016, 6, 112140-112147.	3.6	6
126	Enhanced photocatalytic degradation of dye under visible light on mesoporous microspheres by defects in manganese- and nitrogen-co-doped TiO2. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	10

#	ARTICLE	IF	CITATIONS
127	In situ Magnesiothermal Synthesis of Mesoporous MgO/OMC Composite for Sensitive Detection of Lead Ions. Electroanalysis, 2016, 28, 2939-2946.	2.9	7
128	Facile one-pot synthesis and application of nitrogen and sulfur-doped activated graphene in simultaneous electrochemical determination of hydroquinone and catechol. Analyst, The, 2016, 141, 5555-5562.	3.5	45
129	N-Doped Ordered Mesoporous Carbon Originated from a Green Biological Dye for Electrochemical Sensing and High-Pressure CO ₂ Storage. ACS Applied Materials & Interfaces, 2016, 8, 918-926.	8.0	30
130	Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt ₃ Coâ€"Pt coreâ€"shell nanoparticles. Catalysis Science and Technology, 2016, 6, 1393-1401.	4.1	17
131	Reaction pathway and wiring network dependent Li/Na storage of micro-sized conversion anode with mesoporosity and metallic conductivity. Journal of Materials Chemistry A, 2015, 3, 509-514.	10.3	37
132	Geometric effect of Ru/HSAG@mSiO ₂ : a catalyst for selective hydrogenation of cinnamaldehyde. RSC Advances, 2014, 4, 30180-30185.	3.6	17
133	Surface oxidation for enhancing the hydrogen evolution reaction of metal nitrides: a theoretical study on vanadium nitride. Materials Advances, 0, , .	5.4	4