
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3332644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. Npj Computational Materials, 2019, 5, .	8.7	480
2	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie - International Edition, 2017, 56, 13800-13804.	13.8	409
3	Zirconium nitride catalysts surpass platinum for oxygen reduction. Nature Materials, 2020, 19, 282-286.	27.5	293
4	Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy, 2017, 35, 9-16.	16.0	289
5	Designed formation through a metal organic framework route of ZnO/ZnCo ₂ O ₄ hollow core–shell nanocages with enhanced gas sensing properties. Nanoscale, 2016, 8, 16349-16356.	5.6	152
6	Conductive Holey MoO ₂ –Mo ₃ N ₂ Heterojunctions as Job-Synergistic Cathode Host with Low Surface Area for High-Loading Li–S Batteries. ACS Nano, 2019, 13, 10049-10061.	14.6	150
7	Nickelâ€Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3941-3954.	6.8	150
8	In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. Journal of Materials Chemistry A, 2017, 5, 6164-6169.	10.3	149
9	Sandwichâ€like Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 12129-12138.	13.8	130
10	Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward. Electrochemical Energy Reviews, 2019, 2, 252-276.	25.5	119
11	Synthesis and application of nano-structured metal nitrides and carbides: A review. Progress in Solid State Chemistry, 2018, 50, 1-15.	7.2	104
12	Intrinsic Electron Localization of Metastable MoS ₂ Boosts Electrocatalytic Nitrogen Reduction to Ammonia. Advanced Materials, 2021, 33, e2007509.	21.0	96
13	RedÂemitting and highly stable carbon dots with dual response to pHÂvalues and ferric ions. Mikrochimica Acta, 2018, 185, 83.	5.0	94
14	Dualâ€Metal Interbonding as the Chemical Facilitator for Singleâ€Atom Dispersions. Advanced Materials, 2020, 32, e2003484.	21.0	90
15	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie, 2017, 129, 13988-13992.	2.0	88
16	Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. Journal of Materials Chemistry A, 2018, 6, 12091-12097.	10.3	88
17	ZnO-Reduced Graphene Oxide Composites Sensitized with Graphitic Carbon Nitride Nanosheets for Ethanol Sensing. ACS Applied Nano Materials, 2019, 2, 2734-2742.	5.0	84
18	Oxygen-Defective Ultrathin BiVO ₄ Nanosheets for Enhanced Gas Sensing. ACS Applied Materials & Interfaces, 2019, 11, 23495-23502.	8.0	81

#	Article	IF	CITATIONS
19	Recent Advances in Transition Metal Nitrideâ€Based Materials for Photocatalytic Applications. Advanced Functional Materials, 2021, 31, 2100553.	14.9	80
20	A Surfaceâ€Oxideâ€Rich Activation Layer (SOAL) on Ni ₂ Mo ₃ N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 18036-18041.	13.8	77
21	Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors. Nano-Micro Letters, 2020, 12, 20.	27.0	73
22	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie - International Edition, 2021, 60, 6561-6566.	13.8	66
23	Coordination Polymer-Derived Multishelled Mixed Ni–Co Oxide Microspheres for Robust and Selective Detection of Xylene. ACS Applied Materials & Interfaces, 2018, 10, 15314-15321.	8.0	64
24	Mesoporous Ternary Nitrides of Earth-Abundant Metals as Oxygen Evolution Electrocatalyst. Nano-Micro Letters, 2020, 12, 79.	27.0	63
25	Low Workingâ€Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites. Small, 2016, 12, 3128-3133.	10.0	57
26	Ordered Mesoporous Cobalt–Nickel Nitride Prepared by Nanocasting for Oxygen Evolution Reaction Electrocatalysis. Advanced Materials Interfaces, 2019, 6, 1900960.	3.7	57
27	Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. Journal of Colloid and Interface Science, 2018, 527, 230-240.	9.4	56
28	Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes. Nanoscale Advances, 2019, 1, 1413-1420.	4.6	54
29	Mechanochemical synthesis of multi-site electrocatalysts as bifunctional zinc–air battery electrodes. Journal of Materials Chemistry A, 2019, 7, 19355-19363.	10.3	53
30	Ruthenium Triazine Composite: A Good Match for Increasing Hydrogen Evolution Activity through Contact Electrification. Advanced Energy Materials, 2020, 10, 2000067.	19.5	52
31	Yellow-emitting carbon-dots-impregnated carboxy methyl cellulose/poly-vinyl-alcohol and chitosan: stable, freestanding, enhanced-quenching Cu ²⁺ -ions sensor. Journal of Materials Chemistry C, 2018, 6, 4508-4515.	5.5	51
32	Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Progress in Solid State Chemistry, 2019, 53, 1-26.	7.2	50
33	Facile one-pot synthesis and application of nitrogen and sulfur-doped activated graphene in simultaneous electrochemical determination of hydroquinone and catechol. Analyst, The, 2016, 141, 5555-5562.	3.5	45
34	Nickel–Iron Nitride–Nickel Sulfide Composites for Oxygen Evolution Electrocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 41464-41470.	8.0	44
35	Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties. RSC Advances, 2016, 6, 72791-72802.	3.6	43
36	Three-Dimensional Mesoporous Phosphide–Spinel Oxide Heterojunctions with Dual Function as Catalysts for Overall Water Splitting. ACS Applied Energy Materials, 2020, 3, 1684-1693.	5.1	43

#	Article	IF	CITATIONS
37	Morphology-controlled synthesis of TiO ₂ /MoS ₂ nanocomposites with enhanced visible-light photocatalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 145-152.	6.0	40
38	Titanium Nitride-Supported Platinum with Metal–Support Interaction for Boosting Photocatalytic H ₂ Evolution of Indium Sulfide. ACS Applied Materials & Interfaces, 2021, 13, 7238-7247.	8.0	40
39	Reaction pathway and wiring network dependent Li/Na storage of micro-sized conversion anode with mesoporosity and metallic conductivity. Journal of Materials Chemistry A, 2015, 3, 509-514.	10.3	37
40	Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H2O2 released from cancer cells. Mikrochimica Acta, 2019, 186, 127.	5.0	35
41	High-Performance Supercapacitor Electrode Obtained by Directly Bonding 2D Materials: Hierarchal MoS2 on Reduced Graphene Oxide. Frontiers in Materials, 2020, 7, .	2.4	35
42	Chromium-titanium nitride as an efficient co-catalyst for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 15774-15781.	10.3	34
43	Interface catalysis by Pt nanocluster@Ni ₃ N for bifunctional hydrogen evolution and oxygen evolution. Materials Chemistry Frontiers, 2020, 4, 2665-2672.	5.9	33
44	Prussian blue derived Fe ₂ N for efficiently improving the photocatalytic hydrogen evolution activity of g-C ₃ N ₄ nanosheets. Catalysis Science and Technology, 2019, 9, 2571-2577.	4.1	32
45	Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction. Journal of Colloid and Interface Science, 2019, 536, 42-52.	9.4	32
46	Physically Adsorbed Metal Ions in Porous Supports as Electrocatalysts for Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1909889.	14.9	32
47	N-Doped Ordered Mesoporous Carbon Originated from a Green Biological Dye for Electrochemical Sensing and High-Pressure CO ₂ Storage. ACS Applied Materials & Interfaces, 2016, 8, 918-926.	8.0	30
48	A dual emission nanocomposite prepared from copper nanoclusters and carbon dots as a ratiometric fluorescent probe for sulfide and gaseousÂH2S. Mikrochimica Acta, 2019, 186, 258.	5.0	30
49	Luminescent properties and sensing performance of a carbon quantum dot encapsulated mesoporous silica/polyacrylonitrile electrospun nanofibrous membrane. Journal of Materials Science, 2016, 51, 6801-6811.	3.7	29
50	Holey Sheets of Interconnected Carbon-Coated Nickel Nitride Nanoparticles as Highly Active and Durable Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 6774-6780.	5.1	28
51	Ni3N-V2O3 enables highly efficient 5-(Hydroxymethyl) furfural oxidation enabling membrane free hydrogen production. Chemical Engineering Journal, 2021, 415, 128864.	12.7	27
52	Hierarchical Co3O4@NiMoO4 core-shell nanowires for chemiresistive sensing of xylene vapor. Mikrochimica Acta, 2019, 186, 222.	5.0	26
53	Dual-doping of ruthenium and nickel into Co ₃ O ₄ for improving the oxygen evolution activity. Materials Chemistry Frontiers, 2020, 4, 1390-1396.	5.9	26
54	Co3Mo3N—An efficient multifunctional electrocatalyst. Innovation(China), 2021, 2, 100096.	9.1	26

#	Article	IF	CITATIONS
55	Three-dimensional carbon nanofiber derived from bacterial cellulose for use in a Nafion matrix on a glassy carbon electrode for simultaneous voltammetric determination of trace levels of Cd(II) and Pb(II). Mikrochimica Acta, 2017, 184, 2759-2766.	5.0	25
56	Boosting Oxygen Reduction for Highâ€Efficiency H ₂ O ₂ Electrosynthesis on Oxygenâ€Coordinated CoNC Catalysts. Small, 2022, 18, e2200730.	10.0	25
57	Orange Peel Derived Câ€dots Decorated CuO Nanorods for the Selective Monitoring of Dopamine from Deboned Chicken. Electroanalysis, 2020, 32, 11-18.	2.9	23
58	Nanoheterostructures of Partially Oxidized RuNi Alloy as Bifunctional Electrocatalysts for Overall Water Splitting. ChemSusChem, 2020, 13, 2739-2744.	6.8	23
59	Metal organic framework-derived porous Fe2N nanocubes by rapid-nitridation for efficient photocatalytic hydrogen evolution. Materials Advances, 2020, 1, 1161-1167.	5.4	22
60	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie, 2021, 133, 6635-6640.	2.0	22
61	Integrated sensing array of the perovskite-type LnFeO3 (LnËŁa, Pr, Nd, Sm) to discriminate detection of volatile sulfur compounds. Journal of Hazardous Materials, 2021, 413, 125380.	12.4	22
62	Highly Localized C–N2 Sites for Efficient Oxygen Reduction. ACS Catalysis, 2020, 10, 9366-9375.	11.2	21
63	<i>In situ</i> growth of free-standing perovskite hydroxide electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2020, 8, 5919-5926.	10.3	21
64	A novel synthetic route to cathode materials for Li–S batteries: from organic sulfides to sulfur/nitrogenous carbon composites. Journal of Materials Chemistry A, 2017, 5, 16796-16802.	10.3	20
65	Oxygen Coordination on Fe–N–C to Boost Oxygen Reduction Catalysis. Journal of Physical Chemistry Letters, 2021, 12, 517-524.	4.6	20
66	Crucial Role of Donor Density in the Performance of Oxynitride Perovskite LaTiO ₂ N for Photocatalytic Water Oxidation. ChemSusChem, 2017, 10, 930-937.	6.8	19
67	MoS ₂ â€QDâ€Based Dualâ€Model Photoluminescence Sensing Platform for Effective Determination of Al ³⁺ and Fe ³⁺ Simultaneously in Various Environment. ChemistrySelect, 2018, 3, 2326-2331.	1.5	19
68	Gold lusterâ€Based Dualâ€Emission Nanocomposite Film as Ratiometric Fluorescent Sensing Paper for Specific Metal Ion. Particle and Particle Systems Characterization, 2018, 35, 1700471.	2.3	19
69	Graphene-wrapped nitrogen-doped hollow carbon spheres for high-activity oxygen electroreduction. Materials Chemistry Frontiers, 2018, 2, 1489-1497.	5.9	19
70	Ordered mesoporous transition metal nitrides prepared through hard template nanocasting and rapid nitridation process. Journal of Alloys and Compounds, 2020, 838, 155375.	5.5	19
71	Supporting nickel on vanadium nitride for comparable hydrogen evolution performance to platinum in alkaline solution. Journal of Materials Chemistry A, 2021, 9, 19669-19674.	10.3	19
72	Single-Step Formation of Ni Nanoparticle-Modified Graphene–Diamond Hybrid Electrodes for Electrochemical Glucose Detection. Sensors, 2019, 19, 2979.	3.8	18

#	Article	IF	CITATIONS
73	Geometric Structure and Electronic Polarization Synergistically Boost Hydrogen Evolution Kinetics in Alkaline Medium. Journal of Physical Chemistry Letters, 2020, 11, 3436-3442.	4.6	18
74	Geometric effect of Ru/HSAG@mSiO ₂ : a catalyst for selective hydrogenation of cinnamaldehyde. RSC Advances, 2014, 4, 30180-30185.	3.6	17
75	Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt ₃ Co–Pt core–shell nanoparticles. Catalysis Science and Technology, 2016, 6, 1393-1401.	4.1	17
76	Fe ₃ C cluster-promoted single-atom Fe, N doped carbon for oxygen-reduction reaction. Physical Chemistry Chemical Physics, 2020, 22, 7218-7223.	2.8	17
77	Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials. Nanomaterials, 2021, 11, 1236.	4.1	17
78	High-density catalytic heterostructures strung by buried-in carbon tube network as monolithic holey host for endurable Li-S batteries. Chemical Engineering Journal, 2022, 446, 137294.	12.7	17
79	Tungstenâ€Nitrideâ€Coated Carbon Nanospheres as a Sulfur Host for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 2074-2079.	3.4	16
80	High Oxidation Resistance of CVD Graphene-Reinforced Copper Matrix Composites. Nanomaterials, 2019, 9, 498.	4.1	16
81	MOF Embedded and Cu Doped CeO2 Nanostructures as Efficient Catalyst for Adipic Acid Production: Green Catalysis. Catalysts, 2021, 11, 304.	3.5	16
82	Microwave-assisted synthesis of multimetal oxygen-evolving catalysts. Electrochemistry Communications, 2017, 81, 116-119.	4.7	15
83	pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism. Talanta, 2021, 221, 121621.	5.5	15
84	Identification of active sites for hydrogenation over Ru/SBA-15 using in situ Fourier-transform infrared spectroscopy. Chinese Journal of Catalysis, 2017, 38, 1597-1602.	14.0	14
85	Mesoporous titanium niobium nitrides supported Pt nanoparticles for highly selective and sensitive formaldehyde sensing. Journal of Materials Chemistry A, 2021, 9, 19840-19846.	10.3	14
86	Hierarchical Ni3ZnN Hollow Microspheres as Stable Non-Noble Metal Electrocatalysts for Oxygen Reduction Reactions. Electrocatalysis, 2018, 9, 452-458.	3.0	13
87	Highly integrated nanocomposites of RGO/TiO ₂ nanotubes for enhanced removal of microbes from water. Environmental Technology (United Kingdom), 2019, 40, 2567-2576.	2.2	13
88	Amine coupled ordered mesoporous (Co–N) co-doped TiO ₂ : a green photocatalyst for the selective aerobic oxidation of thioether. Catalysis Science and Technology, 2017, 7, 4182-4192.	4.1	12
89	Atomically Dispersed Fe, N Co-Doped Ordered Mesoporous Carbon for Non-Enzymatic Hydrogen Peroxide Sensing. Journal of the Electrochemical Society, 2018, 165, H348-H352.	2.9	12
90	Integrating trace amounts of Pd nanoparticles into Mo ₃ N ₂ nanobelts for an improved hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2022, 24, 771-777.	2.8	12

HANGJIA SHEN

#	Article	IF	CITATIONS
91	Manganese-doped zinc oxide hollow balls for chemiresistive sensing of acetone vapors. Mikrochimica Acta, 2019, 186, 44.	5.0	11
92	First-principles study of magnetism in some novel MXene materials. RSC Advances, 2020, 10, 44430-44436.	3.6	11
93	MOF-Derived Porous Ternary Nickel Iron Nitride Nanocube as a Functional Catalyst toward Water Splitting Hydrogen Evolution for Solar to Chemical Energy Conversion. ACS Applied Energy Materials, 2022, 5, 6155-6162.	5.1	11
94	Enhanced photocatalytic degradation of dye under visible light on mesoporous microspheres by defects in manganese- and nitrogen-co-doped TiO2. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	10
95	A novel porous Mo ₃ N ₂ /MoO ₃ hybrid nanobelt as supercapacitor electrode material. Nano Futures, 2018, 2, 045001.	2.2	10
96	Solid–Solid Separation Approach for Preparation of Carbon-Supported Cobalt Carbide Nanoparticle Catalysts for Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 3662-3670.	5.0	10
97	Adsorption Behaviors and Phase Equilibria for Clathrate Hydrates of Sulfur- and Nitrogen-Containing Small Molecules. Journal of Physical Chemistry C, 2019, 123, 2691-2702.	3.1	10
98	Experimental and Theoretical Insights of MoS 2 /Mo 3 N 2 Nanoribbonâ€Electrocatalysts for Efficient Hydrogen Evolution Reaction. ChemCatChem, 2020, 12, 122-128.	3.7	10
99	Recent Advances in Nanocasting Cobalt-Based Mesoporous Materials for Energy Storage and Conversion. Electrocatalysis, 2020, 11, 465-484.	3.0	10
100	Interface engineering of mesoporous triphasic cobalt–copper phosphides as active electrocatalysts for overall water splitting. Sustainable Energy and Fuels, 2021, 5, 1366-1373.	4.9	10
101	Clustered-Microcapsule-Shaped Microporous Carbon-Coated Sulfur Composite Synthesized via in Situ Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 44512-44518.	8.0	9
102	<i>In situ</i> synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Advances, 2020, 10, 1281-1286.	3.6	9
103	Ultraâ€low Loading of Au Clusters on Nickel Nitride Efficiently Boosts Photocatalytic Hydrogen Production with Titanium Dioxide. ChemCatChem, 2020, 12, 2752-2759.	3.7	9
104	Nitridation of CoWO ₄ /CdS Nanocomposite Formed Metal Nitrides Assisting Efficiently Photocatalytic Hydrogen Evolution. ACS Omega, 2020, 5, 9969-9976.	3.5	9
105	Mesoporous Ti0.5Cr0.5N for trace H2S detection with excellent long-term stability. Journal of Hazardous Materials, 2022, 423, 127193.	12.4	9
106	Co ₄ N–WN _{<i>x</i>} composite for efficient piezocatalytic hydrogen evolution. Dalton Transactions, 2022, 51, 7127-7134.	3.3	9
107	Mesoporous WN/WO3-Composite Nanosheets for the Chemiresistive Detection of NO2 at Room Temperature. Inorganics, 2016, 4, 24.	2.7	8
108	Gold Nanoclusterâ€Decorated Nickel Nitride as Stable Electrocatalyst for Oxygen Evolution Reaction in Alkaline Media. ChemElectroChem, 2019, 6, 5744-5749.	3.4	8

#	Article	IF	CITATIONS
109	Anti-perovskite metal carbides: A new family of promising electrocatalysts for oxygen reduction in alkaline solution. Materials Research Bulletin, 2021, 133, 111014.	5.2	8
110	In situ Magnesiothermal Synthesis of Mesoporous MgO/OMC Composite for Sensitive Detection of Lead Ions. Electroanalysis, 2016, 28, 2939-2946.	2.9	7
111	Ternary adsorbent photocatalyst hybrid (APH) nanomaterials for improved abstraction of tetracycline from water. Separation Science and Technology, 2020, 55, 2623-2641.	2.5	7
112	A mesoporous Ni ₃ N/NiO composite with a core–shell structure for room temperature, selective and sensitive NO ₂ gas sensing. RSC Advances, 2016, 6, 42917-42922.	3.6	6
113	Effect of nitrogen substitution on the structural and magnetic ordering transitions of NiCr ₂ O ₄ . RSC Advances, 2016, 6, 112140-112147.	3.6	6
114	Formation mechanism of highly dispersed semi-embedded ruthenium nanoparticles in porous carbon matrix determined by in situ temperature-programmed infrared spectroscopy. Chinese Journal of Catalysis, 2018, 39, 146-156.	14.0	6
115	Flowerâ€like FeS Coated with Heteroatom (S,N)â€Doped Carbon as Highly Active and Durable Oxygen Reduction Electrocatalysts. ChemElectroChem, 2020, 7, 2433-2439.	3.4	6
116	Nitrogen, sulfur co-doped carbon coated zinc sulfide for efficient hydrogen peroxide electrosynthesis. Dalton Transactions, 2021, 50, 5416-5419.	3.3	6
117	Facile Construction of Carbon Encapsulated of Earthâ€Abundant Metal Sulfides for Oxygen Electrocatalysis. ChemElectroChem, 2021, 8, 3533-3537.	3.4	6
118	Spin engineering of single-site metal catalysts. Innovation(China), 2022, 3, 100268.	9.1	6
119	FeNi ₃ –FeNi ₃ N – a high-performance catalyst for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 6245-6250.	4.9	5
120	Protic salt-based nitrogen-doped mesoporous carbon for simultaneous electrochemical detection of Cd(ii) and Pb(ii). RSC Advances, 2017, 7, 36929-36934.	3.6	4
121	Molten Salts–Assisted Fabrication of Fe, S, and N Coâ€Doped Carbon as Efficient Oxygen Reduction Reaction Catalyst. Energy Technology, 2020, 8, 1900896.	3.8	4
122	A Surfaceâ€Oxideâ€Rich Activation Layer (SOAL) on Ni 2 Mo 3 N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 18192-18197.	2.0	4
123	Surface oxidation for enhancing the hydrogen evolution reaction of metal nitrides: a theoretical study on vanadium nitride. Materials Advances, 0, , .	5.4	4
124	Oxygen Release and Incorporation Behaviors Influenced by A-Site Cation Order/Disorder in LaCa ₂ Fe ₃ O ₉ with Unusually High Valence Fe ^{3.67+} . Chemistry of Materials, 2022, 34, 345-350.	6.7	4
125	Large‣cale Synthesis of Flexible, Stable, and Transparent MoS ₂ Quantum Dotsâ€Polyvinyl Alcohol Sensing Film. Particle and Particle Systems Characterization, 2018, 35, 1800189.	2.3	3
126	Nickel Hydroxide with Structural Defects for Sensitive Detection of Pb(II) and Cd(II) Ions in Aqueous Media. Journal of the Electrochemical Society, 2019, 166, B1330-B1334.	2.9	3

HANGJIA SHEN

#	Article	IF	CITATIONS
127	Three-Dimensional Hierarchically Ternary Iron Tungsten Nitride Nanosheets with Slight Ratio of Nickel Modulation for Oxygen Evolution Reaction. Nano, 2019, 14, 1950089.	1.0	3
128	Cobalt Nanoparticles Modified Single-Walled Titanium Carbonitride Nanotube Derived from Solid-Solid Separation for Oxygen Reduction Reaction in Alkaline Solution. Electrocatalysis, 2020, 11, 579-592.	3.0	3
129	A size tunable bimetallic nickel-zinc nitride as a multi-functional co-catalyst on nitrogen doped titania boosts solar energy conversion. Dalton Transactions, 2020, 49, 4887-4895.	3.3	3
130	Multifunctional hosts of Zinc sulfide coated carbon nanotubes for lithium sulfur batteries. SN Applied Sciences, 2020, 2, 1.	2.9	3
131	Sandwichâ€ i ike Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 12227-12236.	2.0	3
132	Communication—Fe/FeNi3 Embedded in Nitrogen-Doped Carbon Nanotubes as Bifunctional Oxygen Electrocatalysts. Journal of the Electrochemical Society, 2020, 167, 146504.	2.9	2
133	Carbon-Encapsulated Cobalt Phosphide Catalyst for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the Electrochemical Society, 2022, 169, 024509.	2.9	1