
Lucia Ballerini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3332430/publications.pdf Version: 2024-02-01

LUCIA RALLEDINI

#	Article	IF	CITATIONS
1	Contribution of white matter hyperintensities to ventricular enlargement in older adults. NeuroImage: Clinical, 2022, 34, 103019.	2.7	4
2	Rationale and design of a longitudinal study of cerebral small vessel diseases, clinical and imaging outcomes in patients presenting with mild ischaemic stroke: Mild Stroke Study 3. European Stroke Journal, 2021, 6, 81-88.	5.5	17
3	Comparison of structural MRI brain measures between 1.5 and 3ÂT: Data from the Lothian Birth Cohort 1936. Human Brain Mapping, 2021, 42, 3905-3921.	3.6	11
4	Structural, Functional, and Metabolic Brain Differences as a Function of Gender Identity or Sexual Orientation: A Systematic Review of the Human Neuroimaging Literature. Archives of Sexual Behavior, 2021, 50, 3329-3352.	1.9	16
5	Cerebral small vessel disease burden and longitudinal cognitive decline from age 73 to 82: the Lothian Birth Cohort 1936. Translational Psychiatry, 2021, 11, 376.	4.8	19
6	Associations between total MRI-visible small vessel disease burden and domain-specific cognitive abilities in a community-dwelling older-age cohort. Neurobiology of Aging, 2021, 105, 25-34.	3.1	5
7	Perivascular spaces in the centrum semiovale at the beginning of the 8th decade of life: effect on cognition and associations with mineral deposition. Brain Imaging and Behavior, 2020, 14, 1865-1875.	2.1	19
8	Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936. NeuroImage: Clinical, 2020, 25, 102120.	2.7	51
9	Dietary patterns, cognitive function, and structural neuroimaging measures of brain aging. Experimental Gerontology, 2020, 142, 111117.	2.8	23
10	Quantitative measurements of enlarged perivascular spaces in the brain are associated with retinal microvascular parameters in older community-dwelling subjects. Cerebral Circulation - Cognition and Behavior, 2020, 1, 100002.	0.9	6
11	Perivascular spaces in the brain: anatomy, physiology and pathology. Nature Reviews Neurology, 2020, 16, 137-153.	10.1	405
12	A Framework for Jointly Assessing and Reducing Imaging Artefacts Automatically Using Texture Analysis and Total Variation Optimisation for Improving Perivascular Spaces Quantification in Brain Magnetic Resonance Imaging. Communications in Computer and Information Science, 2020, , 171-183.	0.5	4
13	Retinal Biomarkers Discovery for Cerebral Small Vessel Disease in an Older Population. Communications in Computer and Information Science, 2020, , 400-409.	0.5	2
14	Retinal microvascular features and cognitive change in the Lothianâ€Birth Cohort 1936. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 500-509.	2.4	8
15	Novel Genetic Locus Influencing Retinal Venular Tortuosity Is Also Associated With Risk of Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2542-2552.	2.4	23
16	Retinal microvasculature and cerebral small vessel disease in the Lothian Birth Cohort 1936 and Mild Stroke Study. Scientific Reports, 2019, 9, 6320.	3.3	49
17	Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 191-204.	2.4	65
18	VAMPIRE [®] fundus image analysis algorithms: Validation and diagnostic relevance in hypertensive cats. Veterinary Ophthalmology, 2019, 22, 819-827.	1.0	7

Lucia Ballerini

#	Article	IF	CITATIONS
19	Perivascular spaces and their associations with risk factors, clinical disorders and neuroimaging features: A systematic review and meta-analysis. International Journal of Stroke, 2019, 14, 359-371.	5.9	123
20	Using orthogonal locality preserving projections to find dominant features for classifying retinal blood vessels. Multimedia Tools and Applications, 2019, 78, 12783-12803.	3.9	8
21	Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering. Scientific Reports, 2018, 8, 2132.	3.3	98
22	Towards Standardization of Quantitative Retinal Vascular Parameters: Comparison of SIVA and VAMPIRE Measurements in the Lothian Birth Cohort 1936. Translational Vision Science and Technology, 2018, 7, 12.	2.2	55
23	Retinal Biomarker Discovery for Dementia in an Elderly Diabetic Population. Lecture Notes in Computer Science, 2017, , 150-158.	1.3	1
24	Modulation of retinal image vasculature analysis to extend utility and provide secondary value from optical coherence tomography imaging. Journal of Medical Imaging, 2016, 3, 020501.	1.5	5
25	Application of the Ordered Logit Model to Optimising Frangi Filter Parameters for Segmentation of Perivascular Spaces. Procedia Computer Science, 2016, 90, 61-67.	2.0	28
26	Automatic Generation of Synthetic Retinal Fundus Images: Vascular Network. Procedia Computer Science, 2016, 90, 54-60.	2.0	23
27	Automatic Generation of Synthetic Retinal Fundus Images: Vascular Network. Lecture Notes in Computer Science, 2016, , 167-176.	1.3	9
28	Association between retinal vasculature and muscle mass in older people. Archives of Gerontology and Geriatrics, 2015, 61, 425-428.	3.0	5
29	Accurate and reliable segmentation of the optic disc in digital fundus images. Journal of Medical Imaging, 2014, 1, 024001.	1.5	54
30	Automatic retinal vessel classification using a Least Square-Support Vector Machine in VAMPIRE. , 2014, 2014, 142-5.		24
31	The use of radial symmetry to localize retinal landmarks. Computerized Medical Imaging and Graphics, 2013, 37, 369-376.	5.8	32
32	Novel VAMPIRE algorithms for quantitative analysis of the retinal vasculature. , 2013, , .		28
33	A Color and Texture Based Hierarchical K-NN Approach to the Classification of Non-melanoma Skin Lesions. Lecture Notes in Computational Vision and Biomechanics, 2013, , 63-86.	0.5	160
34	Spline-based refinement of vessel contours in fundus retinal images for width estimation. , 2013, , .		6
35	Retinal vessel classification: Sorting arteries and veins. , 2013, 2013, 7396-9.		43
36	Non-melanoma skin lesion classification using colour image data in a hierarchical K-NN classifier. , 2012, , .		18

LUCIA BALLERINI

#	Article	IF	CITATIONS
37	Utility of Non-rule-based Visual Matching as a Strategy to Allow Novices to Achieve Skin Lesion Diagnosis. Acta Dermato-Venereologica, 2011, 91, 279-283.	1.3	24
38	Novice Identification of Melanoma: Not Quite as Straightforward as the ABCDs. Acta Dermato-Venereologica, 2011, 91, 125-130.	1.3	34
39	Teaching Dermatology Using 3-Dimensional Virtual Reality. Archives of Dermatology, 2010, 146, 1184-5; author reply 1185-6.	1.4	11
40	Fuzzy description of skin lesions. , 2010, , .		9
41	A Query-by-Example Content-Based Image Retrieval System of Non-melanoma Skin Lesions. Lecture Notes in Computer Science, 2010, , 31-38.	1.3	40
42	Depth Data Improves Skin Lesion Segmentation. Lecture Notes in Computer Science, 2009, 12, 1100-1107.	1.3	14
43	An experimental study on the applicability of evolutionary algorithms to craniofacial superimposition in forensic identification. Information Sciences, 2009, 179, 3998-4028.	6.9	51
44	Automatic 3D Modeling of Skulls by Scatter Search and Heuristic Features. Advances in Soft Computing, 2009, , 149-158.	0.4	4
45	Automatic 3D skull reconstruction using invariant features. , 2008, , .		0
46	Automatic Feature Extraction from 3D Range Images of Skulls. Lecture Notes in Computer Science, 2008, , 58-69.	1.3	2
47	Craniofacial Superimposition in Forensic Identification using Genetic Algorithms. , 2007, , .		10
48	Comparison of histomorphometrical data obtained with two different image analysis methods. Journal of Materials Science: Materials in Medicine, 2007, 18, 1471-1479.	3.6	5
49	Image Space Colonization Algorithm. Lecture Notes in Computer Science, 2006, , 356-367.	1.3	0
50	A New Evolutionary Algorithm for Image Segmentation. Lecture Notes in Computer Science, 2005, , 264-273.	1.3	11
51	Image Segmentation by a Genetic Fuzzy c-Means Algorithm Using Color and Spatial Information. Lecture Notes in Computer Science, 2004, , 260-269.	1.3	9
52	Classification of microscopic images of breast tissue. , 2004, 5370, 960.		3
53	Pore formation in cured–smoked pork determined with image analysis—effects of tumbling and RNâ^' gene. Meat Science, 2003, 65, 1231-1236.	5.5	11
54	Rong cognostation using multiple communicating spakes 2003		0

Lucia Ballerini

#	Article	IF	CITATIONS
55	A segmentation technique to determine fat content in NMR images of beef meat. IEEE Transactions on Nuclear Science, 2002, 49, 195-199.	2.0	16
56	<title>Color image analysis technique for measuring of fat in meat: an application for the meat industry</title> . , 2001, 4301, 113.		8
57	<title>Determination of fat content in NMR images of meat</title> ., 2000, 4115, 680.		Ο
58	<title>Integration of retinal image sequences</title> ., 1998, 3460, 237.		2
59	<title>Genetic snakes for medical image segmentation</title> ., 1998,,.		20
60	A fractal approach to predict fat content in meat images. , 0, , .		5