
Aliya Ibrar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3331256/publications.pdf Version: 2024-02-01

Διινλ Ιρρλρ

#	Article	IF	CITATIONS
1	Facile synthesis of Zn-doped CdS nanowires with efficient photocatalytic performance. Environmental Technology (United Kingdom), 2022, 43, 1783-1790.	2.2	20
2	Deposition of bismuth sulfide and aluminum doped bismuth sulfide thin films for photovoltaic applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 42-53.	2.2	10
3	Facile synthesis of zinc oxide nanostructures and their antibacterial and antioxidant properties. International Nano Letters, 2022, 12, 205-213.	5.0	8
4	Investigation of solid state architectures in tetrazolyl tryptophol stabilized by crucial aromatic interactions and hydrogen bonding: Experimental and theoretical analysis. Journal of Molecular Structure, 2022, 1262, 133079.	3.6	6
5	Utilization of the common functional groups in bioactive molecules: Exploring dual inhibitory potential and computational analysis of keto esters against α-glucosidase and carbonic anhydrase-II enzymes. International Journal of Biological Macromolecules, 2021, 167, 233-244.	7.5	30
6	Antiproliferative and Pro-Apoptotic Effects of Thiazolo[3,2–b][1,2,4]triazoles in Breast and Cervical Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 2181-2191.	1.7	3
7	Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Topics in Current Chemistry, 2021, 379, 3.	5.8	16
8	Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer's Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules, 2021, 26, 6573.	3.8	24
9	Kinetic and Isothermal Studies on the Adsorptive Removal of Direct Yellow 12 Dye from Wastewater Using Propionic Acid Treated Bagasse. ChemistrySelect, 2021, 6, 12146-12152.	1.5	4
10	Exploring biological efficacy of coumarin clubbed thiazolo[3,2–b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach. International Journal of Biological Macromolecules, 2020, 142, 345-354.	7.5	31
11	Robust therapeutic potential of carbazole-triazine hybrids as a new class of urease inhibitors: A distinctive combination of nitrogen-containing heterocycles. Bioorganic Chemistry, 2020, 95, 103479.	4.1	17
12	New frontiers in the transition-metal-free synthesis of heterocycles from alkynoates: an overview and current status. Organic Chemistry Frontiers, 2020, 7, 3734-3791.	4.5	43
13	A combined experimental and theoretical analysis of the solid-state supramolecular self-assembly of N-(2,4-dichlorophenyl)-1-naphthamide: Synthesis, anticholinesterase potential and molecular docking analysis. Journal of Molecular Structure, 2019, 1197, 458-470.	3.6	15
14	Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorganic and Medicinal Chemistry, 2019, 27, 115123.	3.0	28
15	A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorganic Chemistry, 2018, 77, 190-202.	4.1	48
16	Expanding the Alkaline Phosphatase Inhibition, Cytotoxic and Proapoptotic Profile of Biscoumarinâ€Iminothiazole and Coumarinâ€Triazolothiadiazine Conjugates. ChemistrySelect, 2018, 3, 13377-13386.	1.5	5
17	Developing hybrid molecule therapeutics for diverse enzyme inhibitory action: Active role of coumarin-based structural leads in drug discovery. Bioorganic and Medicinal Chemistry, 2018, 26, 3731-3762.	3.0	63
18	Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition. Medicinal Chemistry, 2018, 14, 74-85.	1.5	15

Aliya Ibrar

#	Article	IF	CITATIONS
19	Complex electronic interplay of ïf-hole and ï€-hole interactions in crystals of halogen substituted 1,3,4-oxadiazol-2(3H)-thiones. CrystEngComm, 2017, 19, 3485-3498.	2.6	18
20	Exploration of aroyl/heteroaroyl iminothiazolines featuring 2,4,5-trichlorophenyl moiety as a new class of potent, selective, and in vitro efficacious glucosidase inhibitors. Bioorganic Chemistry, 2017, 74, 134-144.	4.1	18
21	Symmetrical aryl linked bis-iminothiazolidinones as new chemical entities for the inhibition of monoamine oxidases: Synthesis, in vitro biological evaluation and molecular modelling analysis. Bioorganic Chemistry, 2017, 70, 17-26.	4.1	17
22	Rapid Synthesis of Gold Nanoparticles from Quercus incana and Their Antimicrobial Potential against Human Pathogens. Applied Sciences (Switzerland), 2017, 7, 29.	2.5	8
23	Unraveling the Alkaline Phosphatase Inhibition, Anticancer, and Antileishmanial Potential of Coumarin–Triazolothiadiazine Hybrids: Design, Synthesis, and Molecular Docking Analysis. Archiv Der Pharmazie, 2016, 349, 553-565.	4.1	29
24	Transition-metal-free synthesis of oxazoles: valuable structural fragments in drug discovery. RSC Advances, 2016, 6, 93016-93047.	3.6	73
25	Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors. Bioorganic Chemistry, 2016, 68, 177-186.	4.1	46
26	One-pot access to a privileged library of six membered nitrogenous heterocycles through multi-component cascade approach. Research on Chemical Intermediates, 2016, 42, 5147-5196.	2.7	22
27	Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potent and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, X-ray diffraction analysis and molecular docking studies. RSC Advances, 2015, 5, 21249-21267.	3.6	45
28	Investigation of quinoline-4-carboxylic acid as a highly potent scaffold for the development of alkaline phosphatase inhibitors: synthesis, SAR analysis and molecular modelling studies. RSC Advances, 2015, 5, 64404-64413.	3.6	32
29	Facile and expedient access to bis-coumarin–iminothiazole hybrids by molecular hybridization approach: synthesis, molecular modelling and assessment of alkaline phosphatase inhibition, anticancer and antileishmanial potential. RSC Advances, 2015, 5, 89919-89931.	3.6	42
30	Influence of the diversified structural variations at the imine functionality of 4-bromophenylacetic acid derived hydrazones on alkaline phosphatase inhibition: synthesis and molecular modelling studies. RSC Advances, 2015, 5, 90806-90818.	3.6	23
31	Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. European Journal of Medicinal Chemistry, 2015, 90, 124-169.	5.5	317
32	New <i>N</i> â€(Aryl)â€5â€((quinolinâ€8â€yloxy)methyl)â€1,3,4â€oxa/Thiadiazolâ€2â€amines and 4â€Arylâ€5â€((quinolinâ€8â€yloxy)methyl)â€2 <i>H</i> â€1,2,4â€triazoleâ€3(4 <i>H</i>)â€thiones, Synthesis and Characterization. Journal of Heterocyclic Chemistry, 2014, 51, 1357-1362.	2.6	1
33	Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. European Journal of Medicinal Chemistry, 2014, 76, 193-244.	5.5	370
34	Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. European Journal of Medicinal Chemistry, 2014, 78, 167-177.	5.5	86
35	Oxadiazoles as Privileged Motifs for Promising Anticancer Leads: Recent Advances and Future Prospects. Archiv Der Pharmazie, 2014, 347, 1-20.	4.1	58
36	Crystal structure of 2-(4-chlorophenyl)-2-oxoethyl 3-bromobenzoate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 301-304.	0.2	1

Aliya Ibrar

#	Article	IF	CITATIONS
37	Similarities and differences in the crystal packing of methoxybenzyl and methoxyphenylethyl-1,3,4-oxadiazole-2(3H)-thiones. CrystEngComm, 2014, 16, 164-174.	2.6	10
38	Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorganic and Medicinal Chemistry, 2014, 22, 6163-6173.	3.0	54
39	Triazolothiadiazoles and triazolothiadiazines – Biologically attractive scaffolds. European Journal of Medicinal Chemistry, 2013, 63, 854-868.	5.5	77
40	Structurally Diversified Heterocycles and Related Privileged Scaffolds as Potential Urease Inhibitors: A Brief Overview. Archiv Der Pharmazie, 2013, 346, 423-446.	4.1	75
41	Ethyl 2,6-Dimethoxybenzoate: Synthesis, Spectroscopic and X-ray Crystallographic Analysis. Crystals, 2012, 2, 521-527.	2.2	6
42	Synthesis of Some New 3-(5-(Arylamino)-1,3,4-thiadiazol-2-yl)-2H-chromen-2-ones and 3-(4-Aryl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-YL)-2H-chromen-2-ones. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1801-1810.	1.6	8