Kun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333118/publications.pdf

Version: 2024-02-01

33	793	18	27
papers	citations	h-index	g-index
35	35	35	1199
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology, 2014, 468-470, 207-213.	2.4	62
2	Domestic cats and dogs are susceptible to H9N2 avian influenza virus. Virus Research, 2013, 175, 52-57.	2.2	57
3	Conserved Herpesvirus Protein Kinases Target SAMHD1 to Facilitate Virus Replication. Cell Reports, 2019, 28, 449-459.e5.	6.4	55
4	Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathogens, 2015, 11, e1005346.	4.7	53
5	Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathogens, 2018, 14, e1006868.	4.7	45
6	Lowly pathogenic avian influenza (H9N2) infection in Plateau pika (Ochotona curzoniae), Qinghai Lake, China. Veterinary Microbiology, 2014, 173, 132-135.	1.9	38
7	Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets. Scientific Reports, 2015, 5, 15928.	3.3	35
8	Metabolomic Analysis of Influenza A Virus A/WSN/1933 (H1N1) Infected A549 Cells during First Cycle of Viral Replication. Viruses, 2019, 11, 1007.	3.3	35
9	Multiple amino acid substitutions involved in the adaptation of H6N1 avian influenza virus in mice. Veterinary Microbiology, 2014, 174, 316-321.	1.9	30
10	B Cell Receptor Activation and Chemical Induction Trigger Caspase-Mediated Cleavage of PIAS1 to Facilitate Epstein-Barr Virus Reactivation. Cell Reports, 2017, 21, 3445-3457.	6.4	27
11	Efficacy and Safety of Anlotinib in Advanced Non-Small Cell Lung Cancer: A Real-World Study.Cancer Management and Research, 2020, Volume 12, 3409-3417.	1.9	27
12	Contagious Caprine Pleuropneumonia in Endangered Tibetan Antelope, China, 2012. Emerging Infectious Diseases, 2013, 19, 2051-2053.	4.3	26
13	Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adaption in mice. Archives of Virology, 2015, 160, 1267-1277.	2.1	25
14	Experimental infection of non-human primates with avian influenza virus (H9N2). Archives of Virology, 2013, 158, 2127-2134.	2.1	24
15	SAMHD1 Regulates Human Papillomavirus 16-Induced Cell Proliferation and Viral Replication during Differentiation of Keratinocytes. MSphere, 2019, 4, .	2.9	24
16	Global transcriptome analysis of H5N1 influenza virus-infected human cells. Hereditas, 2019, 156, 10.	1.4	24
17	A PB1 T296R substitution enhance polymerase activity and confer a virulent phenotype to a 2009 pandemic H1N1 influenza virus in mice. Virology, 2015, 486, 180-186.	2.4	23
18	CpG/Poly (I:C) mixed adjuvant priming enhances the immunogenicity of a DNA vaccine against eastern equine encephalitis virus in mice. International Immunopharmacology, 2014, 19, 74-80.	3.8	22

#	Article	IF	CITATIONS
19	Adaptive amino acid substitutions enhance the virulence of an H7N7 avian influenza virus isolated from wild waterfowl in mice. Veterinary Microbiology, 2015, 177, 18-24.	1.9	19
20	Adaptive amino acid substitutions enhance the virulence of a reassortant H7N1 avian influenza virus isolated from wild waterfowl in mice. Virology, 2015, 476, 233-239.	2.4	18
21	Three amino acid substitutions in the NS1 protein change the virus replication of H5N1 influenza virus in human cells. Virology, 2018, 519, 64-73.	2.4	16
22	Inclusion of membrane-anchored LTB or flagellin protein in H5N1 virus-like particles enhances protective responses following intramuscular and oral immunization of mice. Vaccine, 2018, 36, 5990-5998.	3.8	15
23	Intramuscular and intranasal immunization with an H7N9 influenza virus-like particle vaccine protects mice against lethal influenza virus challenge. International Immunopharmacology, 2018, 58, 109-116.	3.8	13
24	Transcriptome Profiling Reveals Differential Effect of Interleukin-17A Upon Influenza Virus Infection in Human Cells. Frontiers in Microbiology, 2019, 10, 2344.	3.5	12
25	Caspases Switch off the m ⁶ A RNA Modification Pathway to Foster the Replication of a Ubiquitous Human Tumor Virus. MBio, 2021, 12, e0170621.	4.1	10
26	Understanding Epstein-Barr Virus Life Cycle with Proteomics: A Temporal Analysis of Ubiquitination During Virus Reactivation. OMICS A Journal of Integrative Biology, 2017, 21, 27-37.	2.0	9
27	Case Report: Rosai-Dorfman Disease Involving Sellar Region in a Pediatric Patient: A Case Report and Systematic Review of Literature. Frontiers in Medicine, 2020, 7, 613756.	2.6	9
28	The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection. Oncotarget, 2017, 8, 30422-30437.	1.8	9
29	<scp>CM082</scp> , a novel angiogenesis inhibitor, enhances the antitumor activity of gefitinib on epidermal growth factor receptor mutant nonâ€small cell lung cancer in vitro and in vivo. Thoracic Cancer, 2020, 11, 1566-1577.	1.9	8
30	PIAS1 potentiates the anti-EBV activity of SAMHD1 through SUMOylation. Cell and Bioscience, 2021, 11, 127.	4.8	8
31	Protein inhibitor of activated STAT1 (PIAS1) inhibits IRF8 activation of Epstein-Barr virus lytic gene expression. Virology, 2020, 540, 75-87.	2.4	7
32	Computational predicting the human infectivity of H7N9 influenza viruses isolated from avian hosts. Transboundary and Emerging Diseases, 2021, 68, 846-856.	3.0	6
33	Conserved Herpesvirus Protein Kinases Target SAMHD1 to Facilitate Virus Replication. SSRN Electronic Journal, 0, , .	0.4	1