Javad Nazarian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3330229/publications.pdf

Version: 2024-02-01

117625 114465 4,407 144 34 63 citations g-index h-index papers 151 151 151 6111 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Characteristics of patients ≥10 years of age with diffuse intrinsic pontine glioma: a report from the International DIPG/DMG Registry. Neuro-Oncology, 2022, 24, 141-152.	1.2	9
2	Splicing is an alternate oncogenic pathway activation mechanism in glioma. Nature Communications, 2022, 13, 588.	12.8	17
3	Imipridones affect tumor bioenergetics and promote cell lineage differentiation in diffuse midline gliomas. Neuro-Oncology, 2022, 24, 1438-1451.	1.2	36
4	NFB-20. Pre-clinical models of Mismatch Repair Deficient Gliomas. Neuro-Oncology, 2022, 24, i132-i132.	1.2	0
5	DIPG-48. MRI volumetric and machine learning based analyses predict survival outcome in pediatric diffuse midline glioma. Neuro-Oncology, 2022, 24, i29-i29.	1.2	O
6	DIPG-09. Diffuse Midline Glioma-Adaptive Combinatory Trial (DMG-ACT): A biology-driven platform trial in pediatric and young adult patients with diffuse midline glioma. Neuro-Oncology, 2022, 24, i19-i19.	1.2	1
7	IMG-16. Non-invasive metabolic imaging of response to therapy in diffuse midline gliomas. Neuro-Oncology, 2022, 24, i80-i80.	1.2	O
8	DIPG-31. Prognostic and predictive biomarkers of response in children and young adults with H3K27M-altered diffuse intrinsic pontine glioma: results from a multi-center, interventional clinical trial (PNOC003). Neuro-Oncology, 2022, 24, i25-i25.	1.2	0
9	DIPG-49. International preclinical drug discovery and biomarker program informing an adoptive combinatorial trial for DMG. Neuro-Oncology, 2022, 24, i29-i30.	1.2	0
10	DIPG-47. TSO500ctDNA sequencing reveals oncogenic mutations and copy number variations in the liquid biome of children with diffuse midline glioma. Neuro-Oncology, 2022, 24, i29-i29.	1.2	0
11	Mesenchymal Stem Cells Successfully Deliver Oncolytic Virotherapy to Diffuse Intrinsic Pontine Glioma. Clinical Cancer Research, 2021, 27, 1766-1777.	7.0	38
12	Mechanisms of imipridones in targeting mitochondrial metabolism in cancer cells. Neuro-Oncology, 2021, 23, 542-556.	1.2	30
13	Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naÃ-ve diffuse midline glioma models. Neuro-Oncology, 2021, 23, 376-386.	1.2	43
14	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 807-821.	1.6	40
15	Standardization of the liquid biopsy for pediatric diffuse midline glioma using ddPCR. Scientific Reports, 2021, 11, 5098.	3.3	31
16	Profiling 523 cancer associated genes in circulating tumor DNA of children with CNS tumors Journal of Clinical Oncology, 2021, 39, 3023-3023.	1.6	0
17	HGG-23. IN VITRO AND IN VIVO PRECLINICAL DRUG SCREENING OF PROMISING THERAPEUTICS FOR DIFFUSE MIDLINE GLIOMA (DMG). Neuro-Oncology, 2021, 23, i21-i22.	1.2	O
18	OMIC-09. MAPPING THE HISTONE MUTATIONAL LANDSCAPE ACROSS ADULT AND PEDIATRIC CANCER GENOMES UNCOVERS NOVEL SOMATIC MUTATIONS IN PEDIATRIC HIGH-GRADE GLIOMAS. Neuro-Oncology, 2021, 23, i39-i39.	1.2	0

#	Article	IF	CITATIONS
19	HGG-32. ONC201 AND ONC206 TARGET TUMOR CELL METABOLISM IN PEDIATRIC DIFFUSE MIDLINE GLIOMA PRECLINICAL MODELS. Neuro-Oncology, 2021, 23, i23-i24.	1.2	2
20	An unexpected disease course for a patient with diffuse midline glioma. Pediatric Blood and Cancer, 2021, 68, e29205.	1.5	0
21	Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. Science Translational Medicine, 2021, 13, eabc0497.	12.4	29
22	TAMI-40. PEDIATRIC H3K27M MUTANT GLIOMAS UNDERGO METABOLIC REPROGRAMMING THAT CAN BE LEVERAGED FOR NON-INVASIVE METABOLIC IMAGING. Neuro-Oncology, 2021, 23, vi206-vi207.	1.2	0
23	Preclinical and clinical evaluation of German-sourced ONC201 for the treatment of H3K27M-mutant diffuse intrinsic pontine glioma. Neuro-Oncology Advances, 2021, 3, vdab169.	0.7	11
24	Pediatric high-grade glioma resources from the Children's Brain Tumor Tissue Consortium. Neuro-Oncology, 2020, 22, 163-165.	1.2	29
25	ΔNp73/ETS2 complex drives glioblastoma pathogenesis— targeting downstream mediators by rebastinib prolongs survival in preclinical models of glioblastoma. Neuro-Oncology, 2020, 22, 345-356.	1.2	20
26	Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell, 2020, 183, 1962-1985.e31.	28.9	177
27	Histone tail analysis reveals H3K36me2 and H4K16ac as epigenetic signatures of diffuse intrinsic pontine glioma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 261.	8.6	16
28	Advances in Targeted Therapies for Pediatric Brain Tumors. Current Treatment Options in Neurology, 2020, 22, 1.	1.8	16
29	Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro-Oncology, 2020, 22, 1302-1314.	1.2	42
30	Harmonization of postmortem donations for pediatric brain tumors and molecular characterization of diffuse midline gliomas. Scientific Reports, 2020, 10, 10954.	3.3	7
31	Pediatric hemispheric high-grade glioma: targeting the future. Cancer and Metastasis Reviews, 2020, 39, 245-260.	5.9	26
32	DDRE-21. PNOC015: PHASE 1 STUDY OF MTX110 DELIVERED BY CONVECTION ENHANCED DELIVERY (CED) IN CHILDREN WITH NEWLY DIAGNOSED DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG) PREVIOUSLY TREATED WITH RADIATION THERAPY. Neuro-Oncology, 2020, 22, ii66-ii66.	1.2	2
33	Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. Journal of Clinical Investigation, 2020, 130, 6325-6337.	8.2	70
34	Addition of Multimodal Immunotherapy to Combination Treatment Strategies for Children with DIPG: A Single Institution Experience. Medicines (Basel, Switzerland), 2020, 7, 29.	1.4	15
35	DIPG-39. NOVEL PROTEOMIC ANALYSIS REVEALS EPIGENETIC THERAPEUTIC TARGETS IN PEDIATRIC GLIOMA. Neuro-Oncology, 2020, 22, iii294-iii294.	1.2	O
36	EPID-14. GABRIELLA MILLER KIDS FIRST DATA RESOURCE CENTER: COLLABORATIVE PLATFORMS FOR ACCELERATING RESEARCH IN PEDIATRIC CANCERS & STRUCTURAL BIRTH DEFECTS. Neuro-Oncology, 2020, 22, iii321-iii321.	1.2	1

#	Article	IF	Citations
37	EXTH-67. PHARMACOLOGIC INHIBITION OF LYSINE SPECIFIC DEMETHYLASE-1 (LSD1) AS AN ADJUVANT IMMUNE-SENSITIZATION STRATEGY IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2020, 22, ii102-ii102.	1.2	O
38	DDRE-03. INTERNATIONAL PRECLINICAL DRUG DISCOVERY AND BIOMARKER PROGRAM INFORMING AN ADOPTIVE COMBINATORIAL TRIAL FOR DIFFUSE MIDLINE GLIOMAS. Neuro-Oncology, 2020, 22, ii61-ii62.	1.2	0
39	CTNI-17. CLINICAL EFFICACY AND PREDICTIVE BIOMARKERS OF ONC201 IN H3 K27M-MUTANT DIFFUSE MIDLINE GLIOMA. Neuro-Oncology, 2020, 22, ii45-ii46.	1.2	O
40	DDRE-10. IMMUNE PROFILES ASSOCIATE WITH OUTCOMES IN HLA-A*02:01+, H3.3K27M+ PATIENTS WITH DIFFUSE MIDLINE GLIOMAS TREATED WITH H3.3K27M PEPTIDE VACCINE COMBINED WITH POLY-ICLC: A PNOC REPORT. Neuro-Oncology, 2020, 22, ii63-ii63.	1.2	0
41	TMOD-19. GABRIELLA MILLER KIDS FIRST DATA RESOURCE CENTER: LARGE-SCALE HARMONIZED CLINICAL AND GENOMIC DATA PLATFORM TO SUPPORT CHILDHOOD CANCER AND STRUCTURAL BIRTH DEFECT RESEARCH. Neuro-Oncology, 2019, 21, ii125-ii125.	1.2	O
42	PPM1D mutations silence NAPRT geneÂexpression and confer NAMPT inhibitor sensitivity in glioma. Nature Communications, 2019, 10, 3790.	12.8	54
43	Medulloblastoma rendered susceptible to NK-cell attack by TGF \hat{l}^2 neutralization. Journal of Translational Medicine, 2019, 17, 321.	4.4	32
44	Histone Variant and Cell Context Determine H3K27M Reprogramming of the Enhancer Landscape and Oncogenic State. Molecular Cell, 2019, 76, 965-980.e12.	9.7	110
45	Identification of Novel RAS Signaling Therapeutic Vulnerabilities in Diffuse Intrinsic Pontine Gliomas. Cancer Research, 2019, 79, 4026-4041.	0.9	16
46	Detection and Monitoring of Tumor Associated Circulating DNA in Patient Biofluids. Journal of Visualized Experiments, 2019, , .	0.3	5
47	DIPG-30. ISOFORM SPECIFIC OVEREXPRESSION OF WILMS' TUMOR PROTEIN IN DIFFUSE INTRINSIC PONTINE GLIOMAS. Neuro-Oncology, 2019, 21, ii75-ii75.	1.2	O
48	DIPG-32. COMBINATION OF ChIP-SEQ AND RNA-SEQ ANALYSIS FOR TARGET DISCOVERY REVEAL PROMISING CANDIDATES FOR VALIDATION. Neuro-Oncology, 2019, 21, ii75-ii76.	1.2	0
49	DIPG-35. OPEN DIPG INITIATIVE: A PLATFORM FOR ACCELERATING DISCOVERY THROUGH DATA ACCESS, CONSOLIDATION AND HARMONIZATION. Neuro-Oncology, 2019, 21, ii76-ii76.	1.2	O
50	DIPG-15. PNOC-003: CLINICAL IMPACT OF A PRECISION MEDICINE STRATEGY FOR CHILDREN WITH DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2019, 21, ii71-ii71.	1.2	0
51	TMOD-20. THE PEDIATRIC BRAIN TUMOR ATLAS: AN INITIATIVE BY THE CHILDREN'S BRAIN TUMOR TISSUE CONSORTIUM AND PACIFIC PEDIATRIC NEUROONCOLOGY CONSORTIUM. Neuro-Oncology, 2019, 21, ii125-ii125.	1.2	O
52	DIPG-26. ACVR1 R206H COOPERATES WITH H3.1K27M IN PROMOTING DIFFUSE INTRINSIC PONTINE GLIOMA PATHOGENESIS. Neuro-Oncology, 2019, 21, ii74-ii74.	1.2	0
53	DIPG-33. HARMONIZATION AND CHARACTERIZATION OF POSTMORTEM DONATIONS FOR PEDIATRIC BRAIN TUMORS. Neuro-Oncology, 2019, 21, ii76-ii76.	1.2	O
54	DIPG-34. PRECLINICAL PRECISION TESTING OF PNOCO03 BIOPSY DERIVED MODELS OF DIPG. Neuro-Oncology, 2019, 21, ii76-ii76.	1.2	0

#	Article	IF	CITATIONS
55	GENE-18. PAN-OMIC ANALYSIS OF DIFFUSE INTRINSIC PONTINE GLIOMA FROM CHILDREN ENROLLED IN THE PNOC003 PRECISION MEDICINE TRIAL IDENTIFIES OPPORTUNITIES AND CHALLENGES IN CLINICAL IMPLEMENTATION OF A MULTI-OMICS SEQUENCING APPROACH. Neuro-Oncology, 2019, 21, ii85-ii85.	1.2	0
56	HGG-24. COMPREHENSIVE GENOMIC ANALYSIS OF PEDIATRIC GLIOMAS UNCOVERS NOVEL MUTATIONS IN HISTONE-ENCODING GENES. Neuro-Oncology, 2019, 21, ii91-ii92.	1.2	0
57	GENE-20. MULTI-GENE MUTATION PROFILING OF PEDIATRIC MIDLINE GLIOMAS USING PATIENT LIQUID BIOPSY. Neuro-Oncology, 2019, 21, ii85-ii85.	1.2	0
58	Differential Expression of Wilms' Tumor Protein in Diffuse Intrinsic Pontine Glioma. Journal of Neuropathology and Experimental Neurology, 2019, 78, 380-388.	1.7	5
59	ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis. Nature Communications, 2019, 10, 1023.	12.8	87
60	A pilot precision medicine trial for children with diffuse intrinsic pontine gliomaâ€"PNOC003: A report from the Pacific Pediatric Neuroâ€Oncology Consortium. International Journal of Cancer, 2019, 145, 1889-1901.	5.1	84
61	The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Developmental Cell, 2019, 49, 10-29.	7.0	57
62	Somatic Mosaicism of IDH1 R132H Predisposes to Anaplastic Astrocytoma: A Case of Two Siblings. Frontiers in Oncology, 2019, 9, 1507.	2.8	2
63	Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. Journal of Clinical Oncology, 2018, 36, 1963-1972.	1.6	250
64	DIPG-53. COMPREHENSIVE CLINICAL AND MOLECULAR ANALYSIS OF PEDIATRIC THALAMIC GLIOMA. Neuro-Oncology, 2018, 20, i59-i60.	1,2	0
65	DIPG-64. REST MODULATES NEOVASCULATURE VIA REGULATION OF GREMLIN EXPRESSION IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2018, 20, i62-i62.	1.2	0
66	TBIO-29. PedcBioPortal, A CANCER DATA VISUALIZATION TOOL FOR INTEGRATIVE PEDIATRIC CANCER ANALYSES. Neuro-Oncology, 2018, 20, i186-i186.	1,2	0
67	HGG-37. DETECTION OF IDH1 R132H MOSAICISM IN ANAPLASTIC ASTROCYTOMA PATIENTS. Neuro-Oncology, 2018, 20, i97-i97.	1.2	0
68	PDTM-07. DETECTION OF IDH1 R132H MOSAICISM IN ANAPLASTIC ASTROCYTOMA PATIENTS. Neuro-Oncology, 2018, 20, vi205-vi205.	1,2	0
69	HGG-38. DEVELOPMENT AND COMPREHENSIVE CHARACTERIZATION AND UTILIZATION OF PRECLINICAL MODELS OF PEDIATRIC HIGH GRADE GLIOMAS. Neuro-Oncology, 2018, 20, i97-i97.	1.2	0
70	TBIO-27. GABRIELLA MILLER KIDS FIRST DATA RESOURCE CENTER ADVANCING GENETIC RESEARCH IN CHILDHOOD CANCER AND STRUCTURAL BIRTH DEFECTS THROUGH LARGE SCALE INTEGRATED DATA-DRIVEN DISCOVERY AND CLOUD-BASED PLATFORMS FOR COLLABORATIVE ANALYSIS. Neuro-Oncology, 2018, 20, i186-i186.	1.2	0
71	TBIO-28. DISEASEXPRESS, A CANCER DATA ANALYTICS AND VISUALIZATION TOOL FOR IDENTIFYING IMMUNOTHERAPEUTIC TARGETS IN PEDIATRIC BRAIN TUMORS AND OTHER CANCERS. Neuro-Oncology, 2018, 20, i186-i186.	1,2	O
72	DIPG-58. SUBTYPE-SPECIFIC OVEREXPRESSION OF WILMS' TUMOR PROTEIN IN PEDIATRIC MIDLINE HIGH GRADE GLIOMAS. Neuro-Oncology, 2018, 20, i60-i61.	1,2	0

#	Article	IF	CITATIONS
73	PDTM-15. IDENTIFICATION AND CHARACTERIZATION OF WILMS' TUMOR PROTEIN IN PEDIATRIC MIDLINE GLIOMAS. Neuro-Oncology, 2018, 20, vi206-vi207.	1.2	0
74	Liquid biopsy for pediatric central nervous system tumors. Npj Precision Oncology, 2018, 2, 29.	5.4	24
75	DIPG-32. CLINICALLY RELEVANT AND MINIMALLY INVASIVE TUMOR SURVEILLANCE IN PEDIATRIC GLIOMAS USING LIQUID BIOME. Neuro-Oncology, 2018, 20, i55-i55.	1.2	0
76	DIPG-69. CHARACTERISTICS OF PATIENTS ≥ 10 YEARS OF AGE WITH DIFFUSE INTRINSIC PONTINE GLIOMA: A REPORT FROM THE INTERNATIONAL DIPG REGISTRY. Neuro-Oncology, 2018, 20, i63-i63.	1.2	1
77	Clinically Relevant and Minimally Invasive Tumor Surveillance of Pediatric Diffuse Midline Gliomas Using Patient-Derived Liquid Biopsy. Clinical Cancer Research, 2018, 24, 5850-5859.	7.0	118
78	DIPG-31. TUMOR SURVEILLANCE USING LIQUID BIOME IN PEDIATRIC HIGH GRADE GLIOMAS. Neuro-Oncology, 2018, 20, i55-i55.	1.2	0
79	DIPG-51. BLACKFYNN: A SECURE, CLOUD-BASED PLATFORM FOR SHARING AND ANALYZING RESEARCH READY DATA FOR PEDIATRIC CNS CANCERS. Neuro-Oncology, 2018, 20, i59-i59.	1.2	1
80	DIPG-52. ACTIVE CHROMATIN IN H3K27M DIPG REVEALS DISTINCT EPIGENETIC SUBTYPES AND SUBTYPE-SPECIFIC MECHANISMS OF PATHOGENESIS. Neuro-Oncology, 2018, 20, i59-i59.	1.2	0
81	DIPG-50. CHROMATIN IMMUNOPRECIPITATION OF DIFFUSE INTRINSIC PONTINE GLIOMA TUMOR TISSUE IS FEASIBLE AND SHOW DIFFERENT ENRICHMENT COMPARED TO PRIMARY CELL LINE. Neuro-Oncology, 2018, 20, i59-i59.	1.2	0
82	DIPG-76. PNOC-003: PRECISION MEDICINE TRIAL FOR CHILDREN WITH DIFFUSES INTRINSIC PONTINE GLIOMA: PRELIMINARY EXPERIENCE WITH MULTI-AGENT PERSONALIZED THERAPY RECOMMENDATIONS. Neuro-Oncology, 2018, 20, i64-i64.	1.2	2
83	DIPG-70. CLINICAL, RADIOLOGICAL, PATHOLOGICAL AND MOLECULAR CHARACTERISTICS OF CHILDREN <3 YEARS WITH DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG): A REPORT FROM THE INTERNATIONAL DIPG REGISTRY. Neuro-Oncology, 2018, 20, i63-i63.	1.2	O
84	Molecular and functional analysis of anchorage independent, treatment-evasive neuroblastoma tumorspheres with enhanced malignant properties: A possible explanation for radio-therapy resistance. PLoS ONE, 2018, 13, e0189711.	2.5	12
85	REST upregulates gremlin to modulate diffuse intrinsic pontine glioma vasculature. Oncotarget, 2018, 9, 5233-5250.	1.8	12
86	The dual mTOR kinase inhibitor TAK228 inhibits tumorigenicity and enhances radiosensitization in diffuse intrinsic pontine glioma. Cancer Letters, 2017, 400, 110-116.	7.2	52
87	DIPG-40. PNOC-003: PRECISION MEDICINE TRIAL FOR CHILDREN WITH DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2017, 19, iv14-iv14.	1.2	1
88	GENE-12. THE CHILDREN'S BRAIN TUMOR TISSUE CONSORTIUM (CBTTC) INFRASTRUCTURE FACILITATES COLLABORATIVE RESEARCH IN PEDIATRIC CENTRAL NERVOUS SYSTEM TUMORS. Neuro-Oncology, 2017, 19, iv20-iv21.	1.2	3
89	DIPG-12. OPTIMIZATION OF OSMOTIC PUMP IMPLANTATION FOR DELIVERY OF THERAPEUTICS VIA CONVECTION ENHANCED DELIVERY IN PRECLINICAL MODELS OF DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2017, 19, iv7-iv7.	1.2	O
90	DIPG-39. LIQUID BIOPSY FOR MONITORING OF TUMOR RESPONSE IN CHILDREN WITH MIDLINE GLIOMAS. Neuro-Oncology, 2017, 19, iv13-iv14.	1.2	0

#	Article	IF	CITATIONS
91	GENE-43. LIQUID BIOPSY FOR MONITORING OF TUMOR RESPONSE IN CHILDREN WITH DIFFUSE MIDLINE GLIOMA. Neuro-Oncology, 2017, 19, vi101-vi102.	1.2	O
92	MEDU-10. THE PROTEO(EPI)GENOMICS OF MEDULLOBLASTOMA. Neuro-Oncology, 2017, 19, iv39-iv39.	1.2	0
93	GENE-18. USE OF PRIMARY TEETH AND AÂTOOTH BRUSH AS SOURCES OF DNA IN AN ANAPLASTIC ASTROCYTOMA CASE. Neuro-Oncology, 2017, 19, vi96-vi96.	1.2	1
94	PDTM-25. GENETIC SUSCEPTIBILITY AND EVOLUTION OF PEDIATRIC IDH-MUTANT INFILTRATING ASTROCYTOMAS. Neuro-Oncology, 2017, 19, vi195-vi195.	1.2	1
95	TMIC-25. TUMOR MIGRATION AND ROLE OF MICROENVIRONMENT IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2017, 19, vi248-vi248.	1.2	1
96	GENE-15. CAVATICA- AÂPEDIATRIC GENOMIC CLOUD EMPOWERING DATA DISCOVERY THROUGH THE PEDIATRIC BRAIN TUMOR ATLAS. Neuro-Oncology, 2017, 19, iv21-iv21.	1.2	3
97	SCDT-30. SURGICAL IMPLANTATION OF AN OSMOTIC PUMP FOR CONVECTION ENHANCED DELIVERY INTO DIPG XENOGRAFT MURINE MODELS. Neuro-Oncology, 2017, 19, vi271-vi271.	1.2	O
98	Vamorolone, a dissociative steroidal compound, reduces pro-inflammatory cytokine expression in glioma cells and increases activity and survival in a murine model of cortical tumor. Oncotarget, 2017, 8, 9366-9374.	1.8	9
99	HG-62NEEDS AND MEANS OF POSTMORTEM BRAIN TUMOR DONATION AND COORDINATION: ONE CENTER'S EXPERIENCE. Neuro-Oncology, 2016, 18, iii62.1-iii62.	1.2	О
100	HG-89DEVELOPMENT OF A CHILDHOOD CENTRAL NERVOUS SYSTEM BIOREPOSITORY. Neuro-Oncology, 2016, 18, iii69.1-iii69.	1.2	0
101	HG-76SPATIAL AND TEMPORAL HOMOGENEITY OF DRIVER MUTATIONS IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2016, 18, iii66.1-iii66.	1.2	О
102	MB-44SUBGROUP-SPECIFIC QUANTITATIVE PROTEOMIC ANALYSIS OF MEDULLOBLASTOMA. Neuro-Oncology, 2016, 18, iii106.4-iii106.	1.2	0
103	HG-63NOVEL DISSOCIATIVE STEROIDS FOR TREATMENT OF EDEMA IN CHILDHOOD INTRACRANIAL BRAIN TUMORS. Neuro-Oncology, 2016, 18, iii62.2-iii62.	1.2	О
104	HG-115PRECISION MEDICINE APPROACH FOR CHILDREN WITH DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2016, 18, iii75.1-iii75.	1.2	0
105	HG-91TOPOGRAPHIC HISTOLOGICAL AND MOLECULAR STUDIES OF DIFFUSE INTRINSIC PONTINE GLIOMA TREATED WITH CONVECTION ENHANCED DELIVERY. Neuro-Oncology, 2016, 18, iii69.3-iii69.	1.2	О
106	HG-24GLUCOCORTICOID-MEDIATED EPIGENOMIC REVERSAL IN DIFFUSE INTRINSIC PONTINE GLIOMAS. Neuro-Oncology, 2016, 18, iii52.4-iii52.	1.2	0
107	HG-61MOLECULAR CHARACTERIZATION OF <i>IN VIVO</i> AND <i>IN VITRO</i> MODELS OF DIPG. Neuro-Oncology, 2016, 18, iii61.4-iii62.	1.2	O
108	HG-74DEVELOPMENT OF ROBUST IN VITRO AND IN VIVO PRE-CLINICAL MODELS FOR DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2016, 18, iii65.2-iii65.	1.2	0

#	Article	IF	Citations
109	HG-75CLINICAL, RADIOLOGICAL, AND HISTO-GENETIC CHARACTERISTICS OF LONG-TERM SURVIVORS OF DIFFUSE INTRINSIC PONTINE GLIOMA: A COLLABORATIVE REPORT FROM THE INTERNATIONAL AND SIOP-E DIPG REGISTRIES. Neuro-Oncology, 2016, 18, iii65.3-iii66.	1.2	1
110	PCM-05AUTOPSY-DERIVED ORTHOTOPIC XENOGRAFT MOUSE MODELS OF TERMINAL PEDIATRIC BRAIN TUMORS. Neuro-Oncology, 2016, 18, iii140.1-iii140.	1.2	0
111	Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms. Angewandte Chemie, 2016, 128, 4558-4562.	2.0	16
112	HG-64DEVELOPMENT OF IN VIVO DRUG AND GENE DELIVERY SYSTEMS TO BRAIN TUMOR USING LIPOSOMAL NANOCARRIERS. Neuro-Oncology, 2016, 18, iii62.3-iii62.	1.2	0
113	The Role of NG2 Proteoglycan in Glioma. Translational Oncology, 2016, 9, 57-63.	3.7	43
114	Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nature Communications, 2016, 7, 11185.	12.8	197
115	Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms. Angewandte Chemie - International Edition, 2016, 55, 4482-4486.	13.8	86
116	Titelbild: Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms (Angew. Chem. 14/2016). Angewandte Chemie, 2016, 128, 4443-4443.	2.0	0
117	Disrupting NOTCH Slows Diffuse Intrinsic Pontine Glioma Growth, Enhances Radiation Sensitivity, and Shows Combinatorial Efficacy With Bromodomain Inhibition. Journal of Neuropathology and Experimental Neurology, 2015, 74, 778-790.	1.7	61
118	Clinicopathology of diffuse intrinsic pontine glioma and its redefined genomic and epigenomic landscape. Cancer Genetics, 2015, 208, 367-373.	0.4	35
119	Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 2015, 21, 555-559.	30.7	473
120	Ambient molecular imaging by laser ablation electrospray ionization mass spectrometry with ion mobility separation. International Journal of Mass Spectrometry, 2015, 377, 681-689.	1.5	53
121	A standardized autopsy procurement allows for the comprehensive study of DIPG biology. Oncotarget, 2015, 6, 12740-12747.	1.8	41
122	The emerging role of NG2 in pediatric diffuse intrinsic pontine glioma. Oncotarget, 2015, 6, 12141-12155.	1.8	30
123	Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors. International Journal of Nanomedicine, 2014, 9, 2581.	6.7	33
124	Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma. Acta Neuropathologica Communications, 2014, 2, 59.	5.2	35
125	Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathologica, 2014, 127, 881-895.	7.7	91
126	Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 2014, 46, 451-456.	21.4	525

#	Article	IF	Citations
127	Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. Journal of Cell Biology, 2014, 207, 139-158.	5.2	130
128	Human pontine glioma cells can induce murine tumors. Acta Neuropathologica, 2014, 127, 897-909.	7.7	63
129	Simultaneous Detection of Nonpolar and Polar Compounds by Heat-Assisted Laser Ablation Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2013, 85, 177-184.	6.5	27
130	Morphologic Characteristics and Immunohistochemical Profile of Diffuse Intrinsic Pontine Gliomas. American Journal of Surgical Pathology, 2013, 37, 1357-1364.	3.7	55
131	Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro-Oncology, 2012, 14, 547-560.	1.2	66
132	Advances in the proteomic investigation of the cell secretome. Expert Review of Proteomics, 2012, 9, 337-345.	3.0	109
133	Evolution and comparative genomics of subcellular specializations: EST sequencing of Torpedo electric organ. Marine Genomics, 2011, 4, 33-40.	1.1	6
134	SLC5A8 Gene, A Transporter of Butyrate: A Gut Flora Metabolite, Is Frequently Methylated in African American Colon Adenomas. PLoS ONE, 2011, 6, e20216.	2.5	27
135	Preclinical Evaluation of Radiation and Perifosine in a Genetically and Histologically Accurate Model of Brainstem Glioma. Cancer Research, 2010, 70, 2548-2557.	0.9	149
136	Direct analysis of lipids and small metabolites in mouse brain tissue by AP IR-MALDI and reactive LAESI mass spectrometry. Analyst, The, 2010, 135, 751.	3.5	90
137	InÂvitro analysis of metabolites from the untreated tissue of Torpedo californica electric organ by mid-infrared laser ablation electrospray ionization mass spectrometry. Metabolomics, 2009, 5, 263-276.	3.0	42
138	Protein profiling of formalin fixed paraffin embedded tissue: Identification of potential biomarkers for pediatric brainstem glioma. Proteomics - Clinical Applications, 2008, 2, 915-924.	1.6	15
139	Genetic and Clinical Heterogeneity in elF2B-Related Disorder. Journal of Child Neurology, 2008, 23, 205-215.	1.4	46
140	Biologic Computing. , 2008, , 259-XXI.		0
141	The proteome survey of an electricity-generating organ(Torpedo californicaelectric organ). Proteomics, 2007, 7, 617-627.	2.2	19
142	Intracellular expression profiling by laser capture microdissection: three novel components of the neuromuscular junction. Physiological Genomics, 2005, 21, 70-80.	2.3	38
143	Diffuse Intrinsic Pontine Glioma: A Therapeutic Challenge. , 0, , .		0
144	Histological and molecular analysis of a progressive diffuse intrinsic pontine glioma and synchronous metastatic lesions: a case report. Oncotarget, 0, 7, 42837-42842.	1.8	7