
Margaret S Livingstone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3329304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Face neurons encode nonsemantic features. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118705119.	3.3	4
2	Sulcal Depth in the Medial Ventral Temporal Cortex Predicts the Location of a Place-Selective Region in Macaques, Children, and Adults. Cerebral Cortex, 2021, 31, 48-61.	1.6	24
3	On the relationship between maps and domains in inferotemporal cortex. Nature Reviews Neuroscience, 2021, 22, 573-583.	4.9	50
4	The retrocalcarine sulcus maps different retinotopic representations in macaques and humans. Brain Structure and Function, 2021, , 1.	1.2	1
5	Anatomical correlates of face patches in macaque inferotemporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32667-32678.	3.3	18
6	The neurons that mistook a hat for a face. ELife, 2020, 9, .	2.8	14
7	Anatomical folding predicts the location of face-selective domains in macaque IT. Journal of Vision, 2020, 20, 440.	0.1	0
8	The neurovascular response is attenuated by focused ultrasound-mediated disruption of the blood-brain barrier. NeuroImage, 2019, 201, 116010.	2.1	20
9	Universal Mechanisms and the Development of the Face Network: What You See Is What You Get. Annual Review of Vision Science, 2019, 5, 341-372.	2.3	32
10	Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences. Cell, 2019, 177, 999-1009.e10.	13.5	153
11	Body map proto-organization in newborn macaques. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24861-24871.	3.3	30
12	Cortex Is Cortex: Ubiquitous Principles Drive Face-Domain Development. Trends in Cognitive Sciences, 2019, 23, 3-4.	4.0	21
13	Modulation of brain function by targeted delivery of GABA through the disrupted blood-brain barrier. NeuroImage, 2019, 189, 267-275.	2.1	31
14	The neurons that mistook Stuart's hat for his face. Journal of Vision, 2019, 19, 259c.	0.1	1
15	A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device. Physics in Medicine and Biology, 2018, 63, 065008.	1.6	29
16	Focused ultrasound induced opening of the blood-brain barrier disrupts inter-hemispheric resting state functional connectivity in the rat brain. NeuroImage, 2018, 178, 414-422.	2.1	31
17	Preserved cortical organization in the absence of early visual input. Journal of Vision, 2018, 18, 27.	0.1	3
18	Development of the macaque face-patch system. Nature Communications, 2017, 8, 14897.	5.8	79

2

MARGARET S LIVINGSTONE

#	Article	IF	CITATIONS
19	Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding. Journal of Neuroscience, 2017, 37, 5019-5034.	1.7	7
20	End-Stopping Predicts Curvature Tuning along the Ventral Stream. Journal of Neuroscience, 2017, 37, 648-659.	1.7	40
21	Retinotopic Organization of Scene Areas in Macaque Inferior Temporal Cortex. Journal of Neuroscience, 2017, 37, 7373-7389.	1.7	57
22	Seeing faces is necessary for face-domain formation. Nature Neuroscience, 2017, 20, 1404-1412.	7.1	208
23	End-Stopping Predicts Curvature Tuning along the Ventral Stream. Journal of Neuroscience, 2017, 37, 648-659.	1.7	4
24	A hierarchical, retinotopic proto-organization of the primate visual system at birth. ELife, 2017, 6, .	2.8	132
25	Retinotopic organization of scene area in macaque inferior temporal cortex and its implications for development. Journal of Vision, 2017, 17, 309.	0.1	0
26	5th International Symposium on Focused Ultrasound. Journal of Therapeutic Ultrasound, 2016, 4, .	2.2	1
27	Preclinical evaluation of a low-frequency transcranial MRI-guided focused ultrasound system in a primate model. Physics in Medicine and Biology, 2016, 61, 7664-7687.	1.6	17
28	Evolution of Osteocrin as an activity-regulated factor in the primate brain. Nature, 2016, 539, 242-247.	13.7	120
29	Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model. Journal of Neurosurgery, 2016, 124, 1450-1459.	0.9	52
30	Targeted, noninvasive blockade of cortical neuronal activity. Scientific Reports, 2015, 5, 16253.	1.6	34
31	Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Proceedings of SPIE, 2015, , .	0.8	1
32	Symbol addition by monkeys provides evidence for normalized quantity coding. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6822-6827.	3.3	24
33	Novel domain formation reveals proto-architecture in inferotemporal cortex. Nature Neuroscience, 2014, 17, 1776-1783.	7.1	131
34	Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain. Physics in Medicine and Biology, 2013, 58, 4749-4761.	1.6	88
35	Temporary Disruption of the Blood–Brain Barrier by Use of Ultrasound and Microbubbles: Safety and Efficacy Evaluation in Rhesus Macaques. Cancer Research, 2012, 72, 3652-3663.	0.4	474
36	Behavioral and Anatomical Consequences of Early versus Late Symbol Training in Macaques. Neuron, 2012, 73, 608-619.	3.8	95

#	Article	IF	CITATIONS
37	Colored halos around faces and emotion-evoked colors: A new form of synesthesia. Neurocase, 2012, 18, 352-358.	0.2	15
38	Controlled Ultrasound-Induced Blood-Brain Barrier Disruption Using Passive Acoustic Emissions Monitoring. PLoS ONE, 2012, 7, e45783.	1.1	150
39	Stereopsis and Artistic Talent. Psychological Science, 2011, 22, 336-338.	1.8	11
40	Role of Prefrontal Cortex in Conscious Visual Perception. Journal of Neuroscience, 2011, 31, 64-69.	1.7	61
41	The benefit of symbols: monkeys show linear, human-like, accuracy when using symbols to represent scalar value. Animal Cognition, 2010, 13, 711-719.	0.9	26
42	Crossing the â€~Uncanny Valley': Adaptation to Cartoon Faces Can Influence Perception of Human Faces. Perception, 2010, 39, 378-386.	0.5	39
43	Noninvasive functional MRI in alert monkeys. NeuroImage, 2010, 51, 267-273.	2.1	26
44	Perceptual and physiological evidence for a role for early visual areas in motion-induced blindness. Journal of Vision, 2009, 9, 14-14.	0.1	28
45	Using fMRI to distinguish components of the multiple object tracking task. Journal of Vision, 2009, 9, 10-10.	0.1	93
46	A face feature space in the macaque temporal lobe. Nature Neuroscience, 2009, 12, 1187-1196.	7.1	384
47	Mechanisms of Face Perception. Annual Review of Neuroscience, 2008, 31, 411-437.	5.0	533
48	Multivariate Patterns in Object-Selective Cortex Dissociate Perceptual and Physical Shape Similarity. PLoS Biology, 2008, 6, e187.	2.6	126
49	Physiological Mechanisms Underlying Motion-Induced Blindness. Nature Precedings, 2008, , .	0.1	0
50	Privileged Coding of Convex Shapes in Human Object-Selective Cortex. Journal of Neurophysiology, 2008, 100, 753-762.	0.9	25
51	Cytochrome Oxidase and Neurofilament Reactivity in Monocularly Deprived Human Primary Visual Cortex. Cerebral Cortex, 2007, 17, 1283-1291.	1.6	16
52	The double-anchoring theory of lightness perception: A comment on Bressan (2006) Psychological Review, 2007, 114, 1105-1109.	2.7	5
53	Contrast Affects Speed Tuning, Space-Time Slant, and Receptive-Field Organization of Simple Cells in Macaque V1. Journal of Neurophysiology, 2007, 97, 849-857.	0.9	30
54	Perspectives on science and art. Current Opinion in Neurobiology, 2007, 17, 476-482.	2.0	31

MARGARET S LIVINGSTONE

#	Article	IF	CITATIONS
55	The Use of the Cancellation Technique to Quantify the Hermann Grid Illusion. PLoS ONE, 2007, 2, e265.	1.1	4
56	Explaining the footsteps, belly dancer, Wenceslas, and kickback illusions. Journal of Vision, 2006, 6, 5.	0.1	12
57	End stopping in V1 is sensitive to contrast. Nature Neuroscience, 2006, 9, 697-702.	7.1	39
58	V1 Partially Solves the Stereo Aperture Problem. Cerebral Cortex, 2006, 16, 1332-1337.	1.6	7
59	Spatiotemporal Structure of Nonlinear Subunits in Macaque Visual Cortex. Journal of Neuroscience, 2006, 26, 893-907.	1.7	78
60	Spatial and Temporal Properties of Cone Signals in Alert Macaque Primary Visual Cortex. Journal of Neuroscience, 2006, 26, 10826-10846.	1.7	137
61	A Cortical Region Consisting Entirely of Face-Selective Cells. Science, 2006, 311, 670-674.	6.0	991
62	Neural Basis for a Powerful Static Motion Illusion. Journal of Neuroscience, 2005, 25, 5651-5656.	1.7	95
63	A different point of hue. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10761-10762.	3.3	16
64	Loss of Neurofilament Labeling in the Primary Visual Cortex of Monocularly Deprived Monkeys. Cerebral Cortex, 2005, 15, 1146-1154.	1.6	20
65	Directional Inhibition. Neuron, 2005, 45, 5-7.	3.8	10
66	Was Rembrandt Stereoblind?. New England Journal of Medicine, 2004, 351, 1264-1265.	13.9	29
67	Space-Time Maps and Two-Bar Interactions of Different Classes of Direction-Selective Cells in Macaque V-1. Journal of Neurophysiology, 2003, 89, 2726-2742.	0.9	57
68	Two-Dimensional Substructure of Stereo and Motion Interactions in Macaque Visual Cortex. Neuron, 2003, 37, 525-535.	3.8	63
69	Receptive Fields of Disparity-Tuned Simple Cells in Macaque V1. Neuron, 2003, 38, 103-114.	3.8	57
70	End-Stopping and the Aperture Problem. Neuron, 2003, 39, 671-680.	3.8	158
71	Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans. Neuron, 2003, 39, 555-568.	3.8	309
72	Distribution of Non-phosphorylated Neurofilament in Squirrel Monkey V1 Is Complementary to the Pattern of Cytochrome-oxidase Blobs. Cerebral Cortex, 2003, 13, 722-727.	1.6	7

#	Article	IF	CITATIONS
73	Substructure of Direction-Selective Receptive Fields in Macaque V1. Journal of Neurophysiology, 2003, 89, 2743-2759.	0.9	56
74	Color Contrast in Macaque V1. Cerebral Cortex, 2002, 12, 915-925.	1.6	77
75	Two-Dimensional Substructure of MT Receptive Fields. Neuron, 2001, 30, 781-793.	3.8	92
76	Receptive fields of disparity-selective neurons in macaque striate cortex. Nature Neuroscience, 1999, 2, 825-832.	7.1	39
77	Neuronal correlates of visibility and invisibility in the primate visual system. Nature Neuroscience, 1998, 1, 144-149.	7.1	357
78	Mechanisms of Direction Selectivity in Macaque V1. Neuron, 1998, 20, 509-526.	3.8	206
79	Differences between stereopsis, interocular correlation and binocularity. Vision Research, 1996, 36, 1127-1140.	0.7	21
80	Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. Journal of Neurophysiology, 1996, 75, 2467-2485.	0.9	204
81	Ocular dominance columns in New World monkeys. Journal of Neuroscience, 1996, 16, 2086-2096.	1.7	45
82	Stereopsis and binocularity in the squirrel monkey. Vision Research, 1995, 35, 345-354.	0.7	30
83	Stereopsis and positional acuity under dark adaptation. Vision Research, 1994, 34, 799-802.	0.7	30
84	Evidence for a Magnocellular Defect in Developmental Dyslexia. Annals of the New York Academy of Sciences, 1993, 682, 70-82.	1.8	190
85	A comment on "Perceptual correlates of magnocellular and parvocellular channels: Seeing form and depth in afterimages― Vision Research, 1991, 31, 1655-1656.	0.7	1
86	Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7943-7947.	3.3	838
87	Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. Journal of Neuroscience, 1990, 10, 2223-2237.	1.7	179
88	Color Puzzles. Cold Spring Harbor Symposia on Quantitative Biology, 1990, 55, 643-649.	2.0	14
89	Art, Illusion and the Visual System. Scientific American, 1988, 258, 78-85.	1.0	104
90	Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 1988, 240, 740-749.	6.0	3,162

MARGARET S LIVINGSTONE

#	Article	IF	CITATIONS
91	Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity?. Journal of Neuroscience, 1988, 8, 4334-4339.	1.7	88
92	Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience, 1987, 7, 3378-3415.	1.7	746
93	Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey. Journal of Neuroscience, 1987, 7, 3371-3377.	1.7	242
94	Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 1987, 7, 3416-3468.	1.7	1,737
95	Genetic dissection of Drosophila adenylate cyclase Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5992-5996.	3.3	174
96	Spatial relationship and extrafoveal vision. Nature, 1985, 315, 285-285.	13.7	36
97	Complex–unoriented cells in a subregion of primate area 18. Nature, 1985, 315, 325-327.	13.7	154
98	The Well-Modulated Lobster. , 1985, , 339-360.		82
99	Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 1984, 4, 309-356.	1.7	1,578
100	Specificity of intrinsic connections in primate primary visual cortex. Journal of Neuroscience, 1984, 4, 2830-2835.	1.7	277
101	Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell, 1984, 37, 205-215.	13.5	613
102	The well-modulated lobster: The roles of serotonin, octopamine, and proctolin in the lobster nervous system. Pesticide Biochemistry and Physiology, 1984, 22, 133-147.	1.6	33
103	Mutations in the dopa decarboxylase gene affect learning in Drosophila Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 3577-3581.	3.3	148
104	Genetic dissection of monoamine neurotransmitter synthesis in Drosophila. Nature, 1983, 303, 67-70.	13.7	223
105	Colour-generating interactions across the corpus callosum. Nature, 1983, 303, 616-618.	13.7	103
106	Specificity of cortico-cortical connections in monkey visual system. Nature, 1983, 304, 531-534.	13.7	145
107	Neurohormones and lobsters: biochemistry to behavior. Trends in Neurosciences, 1983, 6, 345-349.	4.2	31
108	The 11th J. A. F. Stevenson Memorial Lecture: Blobs and color vision. Canadian Journal of Physiology and Pharmacology, 1983, 61, 1433-1441.	0.7	7

#	Article	IF	CITATIONS
109	Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 6098-6101.	3.3	305
110	Biochemistry and ultrastructure of serotonergic nerve endings in the lobster: Serotonin and octopamine are contained in different nerve endings. Journal of Neurobiology, 1981, 12, 27-54.	3.7	129
111	Effects of sleep and arousal on the processing of visual information in the cat. Nature, 1981, 291, 554-561.	13.7	569
112	Serotonin and Octopamine Produce Opposite Postures in Lobsters. Science, 1980, 208, 76-79.	6.0	380
113	Amines and A Peptide As Neurohormones in Lobsters: Actions on Neuromuscular Preparations and Preliminary Behavioural Studies. Journal of Experimental Biology, 1980, 89, 159-175.	0.8	204