Laurent Bernard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3329209/publications.pdf

Version: 2024-02-01

759233 677142 30 495 12 22 h-index citations g-index papers 30 30 30 526 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Analysis of the Magneto-Mechanical Anisotropy of Steel Sheets in Electrical Applications. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	5
2	Multiscale Modeling of Magnetic Materials. , 2020, , .		1
3	Modified-SST for Uniaxial Characterization of Electrical Steel Sheets Under Controlled Induced Voltage and Constant Stress. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 9756-9765.	4.7	7
4	Magnetic Hysteresis Under Compressive Stress: A Multiscale-Jiles–Atherton Approach. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	11
5	Multiscale approaches for magneto-elasticity in device simulation. Journal of Magnetism and Magnetic Materials, 2019, 487, 165241.	2.3	15
6	Modeling of Magnetic-Induced Deformation Using Computer Code Chaining and Source-Tensor Projection. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	2
7	Reduction of Power Transformer Core Noise Generation Due to Magnetostriction-Induced Deformations Using Fully Coupled Finite-Element Modeling Optimization Procedures. IEEE Transactions on Magnetics, 2017, 53, 1-11.	2.1	13
8	Magneto-mechanical analysis of an axially laminated synchronous reluctance machine. , 2016, , .		2
9	Modeling of magnetic induced deformation using computer code chaining and source tensor projection. , 2016, , .		O
10	EMC analysis of MRI environment in view of optimized performance and cost of image-guided interventions. International Journal of Applied Electromagnetics and Mechanics, 2016, 51, S67-S74.	0.6	7
11	Inductive Charger for Electric Vehicle: Advanced Modeling and Interoperability Analysis. IEEE Transactions on Power Electronics, 2016, , 1-1.	7.9	33
12	Homogenized Magnetoelastic Behavior Model for the Computation of Strain Due to Magnetostriction in Transformers. IEEE Transactions on Magnetics, 2016, 52, 1-12.	2.1	14
13	Modeling of Magnetic Field Perturbations on the Balance Spring of a Mechanical Watch. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	O
14	Electromagnetic fields in body by wireless inductive system. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2015, 34, 590-595.	0.9	3
15	Effect of Stress on Magnetic Hysteresis Losses in a Switched Reluctance Motor: Application to Stator and Rotor Shrink Fitting. IEEE Transactions on Magnetics, 2015, 51, 1-13.	2.1	52
16	Advanced Modeling of a 2-kW Series–Series Resonating Inductive Charger for Real Electric Vehicle. IEEE Transactions on Vehicular Technology, 2015, 64, 421-430.	6.3	50
17	Wideband Electromagnetic Time Reversal With Finite Integration Technique: Localization in Heterogeneous Media and Experimental Validation. IEEE Transactions on Magnetics, 2014, 50, 137-140.	2.1	6
18	3-D Modeling of Thin Sheets in the Discontinuous Galerkin Method for Transient Scattering Analysis. IEEE Transactions on Magnetics, 2014, 50, 493-496.	2.1	4

#	Article	IF	CITATIONS
19	Evaluation of Electromagnetic Fields in Human Body Exposed to Wireless Inductive Charging System. IEEE Transactions on Magnetics, 2014, 50, 1037-1040.	2.1	66
20	Electromagnetic model of EV wireless charging systems in view of energy transfer and radiated field control. International Journal of Applied Electromagnetics and Mechanics, 2014, 46, 355-360.	0.6	6
21	Numerical study of the relation between the thermal effect and the stability of the levitation system excited by an external source. Physica C: Superconductivity and Its Applications, 2013, 487, 1-10.	1.2	22
22	Localization of metal targets by time reversal of electromagnetic waves. EPJ Applied Physics, 2013, 64, 24512.	0.7	1
23	3D modeling of forces between magnet and HTS in a levitation system using new approach of the control volume method based on an unstructured grid. Physica C: Superconductivity and Its Applications, 2012, 475, 32-37.	1.2	20
24	Three-Dimensional Generalized Finite-Difference Modeling of Electromagnetic Time Reversal: Impact of the Density of Dipoles for the Localization of a Dielectric Obstacle in Free Space. IEEE Transactions on Magnetics, 2012, 48, 359-362.	2.1	8
25	Effect of Stress on Switched Reluctance Motors: A Magneto-Elastic Finite-Element Approach Based on Multiscale Constitutive Laws. IEEE Transactions on Magnetics, 2011, 47, 2171-2178.	2.1	33
26	Thermal Model With Winding Homogenization and FIT Discretization for Stator Slot. IEEE Transactions on Magnetics, 2011, 47, 4822-4826.	2.1	96
27	Generalized finite difference scheme using mainly orthogonal and locally barycentric dual mesh for electromagnetic problems. EPJ Applied Physics, 2010, 52, 23307.	0.7	4
28	Efficient Implementation of the UPML in the Generalized Finite-Difference Time-Domain Method. IEEE Transactions on Magnetics, 2010, 46, 3492-3495.	2.1	14
29	Optimization of a probe for the spectroscopic electrical characterization of biological tissues. EPJ Applied Physics, 2007, 39, 171-174.	0.7	0
30	Numerical Formulations to Compute Induced Electromagnetic in the Human Body. , 0, , .		0