
Mary E Lidstrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3328942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters, 1995, 132, 203-208.	1.8	776
2	Molecular Characterization of Functional and Phylogenetic Genes from Natural Populations of Methanotrophs in Lake Sediments. Applied and Environmental Microbiology, 1999, 65, 5066-5074.	3.1	495
3	The Expanding World of Methylotrophic Metabolism. Annual Review of Microbiology, 2009, 63, 477-499.	7.3	363
4	Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium. Applied and Environmental Microbiology, 1988, 54, 951-956.	3.1	356
5	Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters, 1995, 132, 203-208.	1.8	353
6	Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria The GenBank accession numbers for the sequences reported in this paper are AF327711, AF327712, AF327713, AF327714, AF327715, AF327716, AF327717, AF327718, AF327719 and AF32 Microbiology (United Kingdom), 2001, 147, 2065-2075.	27 <mark>7</mark> 20	316
7	Broad-Host-Range <i>cre-lox</i> System for Antibiotic Marker Recycling in Gram-Negative Bacteria. BioTechniques, 2002, 33, 1062-1067.	1.8	305
8	C1 Transfer Enzymes and Coenzymes Linking Methylotrophic Bacteria and Methanogenic Archaea. , 1998, 281, 99-102.		295
9	The role of physiological heterogeneity in microbial population behavior. Nature Chemical Biology, 2010, 6, 705-712.	8.0	287
10	Computational protein design enables a novel one-carbon assimilation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3704-3709.	7.1	286
11	Metabolic engineering in methanotrophic bacteria. Metabolic Engineering, 2015, 29, 142-152.	7.0	274
12	Methylotrophy in Methylobacterium extorquens AM1 from a Genomic Point of View. Journal of Bacteriology, 2003, 185, 2980-2987.	2.2	262
13	High-resolution metagenomics targets specific functional types in complex microbial communities. Nature Biotechnology, 2008, 26, 1029-1034.	17.5	254
14	Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature, 1987, 325, 346-348.	27.8	216
15	Molecular Characterization of Methanotrophic Isolates from Freshwater Lake Sediment. Applied and Environmental Microbiology, 2000, 66, 5259-5266.	3.1	204
16	Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources. PLoS ONE, 2009, 4, e5584.	2.5	204
17	Bacterial Populations Active in Metabolism of C 1 Compounds in the Sediment of Lake Washington, a Freshwater Lake. Applied and Environmental Microbiology, 2005, 71, 6885-6899.	3.1	198
18	Novel Formaldehyde-Activating Enzyme inMethylobacterium extorquens AM1 Required for Growth on Methanol. Journal of Bacteriology, 2000, 182, 6645-6650.	2.2	173

#	Article	IF	CITATIONS
19	nifH Sequences and Nitrogen Fixation in Type I and Type II Methanotrophs. Applied and Environmental Microbiology, 2001, 67, 4009-4016.	3.1	161
20	Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 358-363.	7.1	156
21	Life-on-a-chip. Nature Reviews Microbiology, 2003, 1, 158-164.	28.6	154
22	Formate as the Main Branch Point for Methylotrophic Metabolism in <i>Methylobacterium extorquens</i> AM1. Journal of Bacteriology, 2008, 190, 5057-5062.	2.2	146
23	Genetic Tools for the Industrially Promising Methanotroph Methylomicrobium buryatense. Applied and Environmental Microbiology, 2015, 81, 1775-1781.	3.1	144
24	XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense. Journal of Bacteriology, 2016, 198, 1317-1325.	2.2	142
25	A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the <i>Methylococcaceae</i> and the <i>Methylophilaceae</i> . PeerJ, 2013, 1, e23.	2.0	139
26	Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2819-2823.	1.7	138
27	A pathway for biological methane production using bacterial iron-only nitrogenase. Nature Microbiology, 2018, 3, 281-286.	13.3	131
28	<i>Methylophilaceae</i> link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environmental Microbiology Reports, 2009, 1, 385-392.	2.4	129
29	Seasonal Study of Methane Oxidation in Lake Washington. Applied and Environmental Microbiology, 1984, 47, 1255-1260.	3.1	129
30	Distribution of Tetrahydromethanopterin-Dependent Enzymes in Methylotrophic Bacteria and Phylogeny of Methenyl Tetrahydromethanopterin Cyclohydrolases. Journal of Bacteriology, 1999, 181, 5750-5757.	2.2	124
31	The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean:Methylomonas pelagica sp. nov Current Microbiology, 1987, 14, 285-293.	2.2	121
32	X-ray Absorption and EPR Studies on the Copper Ions Associated with the Particulate Methane Monooxygenase fromMethylococcus capsulatus(Bath). Cu(I) Ions and Their Implications. Journal of the American Chemical Society, 1996, 118, 12766-12776.	13.7	120
33	Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME Journal, 2015, 9, 1119-1129.	9.8	118
34	Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microbial Cell Factories, 2015, 14, 188.	4.0	117
35	Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotrophMethylobacterium extorquens AM1, with application to reconstruction of C3 and C4 metabolism. Biotechnology and Bioengineering, 2002, 78, 296-312.	3.3	111
36	Plants in the Pink: Cytokinin Production by Methylobacterium. Journal of Bacteriology, 2002, 184, 1818-1818.	2.2	108

#	Article	IF	CITATIONS
37	Genome of Methylobacillus flagellatus , Molecular Basis for Obligate Methylotrophy, and Polyphyletic Origin of Methylotrophy. Journal of Bacteriology, 2007, 189, 4020-4027.	2.2	107
38	Isolation and characterization of marine methanotrophs. Antonie Van Leeuwenhoek, 1988, 54, 189-199.	1.7	106
39	Refined crystal structure of methylamine dehydrogenase from Paracoccus denitrificans at 1.75 Ã resolution. Journal of Molecular Biology, 1998, 276, 131-149.	4.2	106
40	Characterization of a Novel Methanol Dehydrogenase in Representatives of <i>Burkholderiales</i> : Implications for Environmental Detection of Methylotrophy and Evidence for Convergent Evolution. Journal of Bacteriology, 2008, 190, 3817-3823.	2.2	105
41	Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2517-2522.	1.7	104
42	Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ, 2015, 3, e801.	2.0	104
43	Formaldehyde-Detoxifying Role of theTetrahydromethanopterin-Linked Pathway in Methylobacteriumextorquens AM1. Journal of Bacteriology, 2003, 185, 7160-7168.	2.2	101
44	Fluorescence In Situ Hybridization-Flow Cytometry-Cell Sorting-Based Method for Separation and Enrichment of Type I and Type II Methanotroph Populations. Applied and Environmental Microbiology, 2006, 72, 4293-4301.	3.1	100
45	Insights into Denitrification in Methylotenera mobilis from Denitrification Pathway and Methanol Metabolism Mutants. Journal of Bacteriology, 2013, 195, 2207-2211.	2.2	99
46	Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. Microbiology (United Kingdom), 1997, 143, 1729-1736.	1.8	98
47	Methylotrophs: Genetics and Commercial Applications. Annual Review of Microbiology, 1990, 44, 27-58.	7.3	97
48	Characterization of the Minimal Replicon of a Cryptic Deinococcus radiodurans SARK Plasmid and Development of Versatile Escherichia coli-D. radiodurans Shuttle Vectors. Applied and Environmental Microbiology, 2000, 66, 3856-3867.	3.1	96
49	Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. ISME Journal, 2008, 2, 696-706.	9.8	94
50	Glyoxylate Regeneration Pathway in the Methylotroph Methylobacterium extorquens AM1. Journal of Bacteriology, 2002, 184, 1750-1758.	2.2	92
51	Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. FEMS Microbiology Letters, 1998, 166, 1-7.	1.8	90
52	Multiple Formate Dehydrogenase Enzymes in the Facultative Methylotroph Methylobacterium extorquens AM1 Are Dispensable for Growth on Methanol. Journal of Bacteriology, 2004, 186, 22-28.	2.2	90
53	The NADP-Dependent Methylene Tetrahydromethanopterin Dehydrogenase in <i>Methylobacterium extorquens</i> AM1. Journal of Bacteriology, 1998, 180, 5351-5356.	2.2	90
54	Estimation of methanotroph abundance in a freshwater lake sediment. Environmental Microbiology, 2002, 4, 443-450.	3.8	89

#	Article	IF	CITATIONS
55	The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: Purification and properties. FEBS Journal, 2003, 270, 325-333.	0.2	89
56	Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 106-111.	1.7	89
5 7	XoxF Is Required for Expression of Methanol Dehydrogenase in Methylobacterium extorquens AM1. Journal of Bacteriology, 2011, 193, 6032-6038.	2.2	87
58	Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Microbial Cell Factories, 2015, 14, 182.	4.0	85
59	Electroporation-Based Genetic Manipulation in Type I Methanotrophs. Applied and Environmental Microbiology, 2016, 82, 2062-2069.	3.1	85
60	Identification and organization of carbon dioxide fixation genes in Xanthobacter flavus H4-14. Molecular Genetics and Genomics, 1991, 225, 320-330.	2.4	81
61	The genetic organization of the mau gene cluster of the facultative autotroph Paracoccus denitrificans. Biochemical and Biophysical Research Communications, 1992, 184, 1181-1189.	2.1	81
62	Oxygen-limited metabolism in the methanotroph <i>Methylomicrobium buryatense</i> 5GB1C. PeerJ, 2017, 5, e3945.	2.0	81
63	A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. FEBS Journal, 1999, 261, 475-480.	0.2	80
64	MeaB Is a Component of the Methylmalonyl-CoA Mutase Complex Required for Protection of the Enzyme from Inactivation. Journal of Biological Chemistry, 2004, 279, 13652-13658.	3.4	80
65	Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection: analysis of amino acid and organic acid trimethylsilyl derivatives, with application to the analysis of metabolites in rye grass samples. Talanta, 2005, 65, 380-388.	5.5	80
66	Promoter Cloning in the Radioresistant Bacterium Deinococcus radiodurans. Journal of Bacteriology, 2001, 183, 3169-3175.	2.2	78
67	Nucleotide sequence of the Methylobacterium extorquens AM1 moxF and moxJ genes involved in methanol oxidation. Gene, 1990, 90, 173-176.	2.2	77
68	Connection between Poly-β-Hydroxybutyrate Biosynthesis and Growth on C 1 and C 2 Compounds in the Methylotroph Methylobacterium extorquens AM1. Journal of Bacteriology, 2001, 183, 1038-1046.	2.2	76
69	Liquid chromatography–tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. Journal of Chromatography A. 2009. 1216. 3280-3289.	3.7	75
70	Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology (United Kingdom), 2006, 152, 2779-2787.	1.8	74
71	A microwell array device capable of measuring single-cell oxygen consumption rates. Sensors and Actuators B: Chemical, 2009, 135, 678-686.	7.8	74
72	Streamlined pentafluorophenylpropyl column liquid chromatography–tandem quadrupole mass spectrometry and global 13C-labeled internal standards improve performance for quantitative metabolomics in bacteria. Journal of Chromatography A, 2010, 1217, 7401-7410.	3.7	74

#	Article	IF	CITATIONS
73	Purification of the Formate-Tetrahydrofolate Ligasefrom Methylobacterium extorquens AM1 and Demonstrationof Its Requirement for MethylotrophicGrowth. Journal of Bacteriology, 2003, 185, 7169-7175.	2.2	73
74	Flux Analysis Uncovers Key Role of Functional Redundancy in Formaldehyde Metabolism. PLoS Biology, 2005, 3, e16.	5.6	72
75	Production of bromoform and dibromomethane by Giant Kelp: Factors affecting release and comparison to anthropogenic bromine sources. Limnology and Oceanography, 1997, 42, 1725-1734.	3.1	71
76	Kinetic analysis of virus adsorption and inactivation in batch experiments. Water Resources Research, 1993, 29, 2067-2085.	4.2	69
77	Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. FEBS Journal, 2000, 267, 3762-3769.	0.2	68
78	Genomes of Three Methylotrophs from a Single Niche Reveal the Genetic and Metabolic Divergence of the Methylophilaceae. Journal of Bacteriology, 2011, 193, 3757-3764.	2.2	66
79	Multiple Formaldehyde Oxidation/Detoxification Pathways in Burkholderia fungorum LB400. Journal of Bacteriology, 2004, 186, 2173-2178.	2.2	65
80	Identification of a Fourth Formate Dehydrogenase in <i>Methylobacterium extorquens</i> AM1 and Confirmation of the Essential Role of Formate Oxidation in Methylotrophy. Journal of Bacteriology, 2007, 189, 9076-9081.	2.2	64
81	Comprehensive proteomics of <i>Methylobacterium extorquens</i> AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics, 2008, 8, 3494-3505.	2.2	62
82	The Expanded Diversity of Methylophilaceae from Lake Washington through Cultivation and Genomic Sequencing of Novel Ecotypes. PLoS ONE, 2014, 9, e102458.	2.5	62
83	Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. Biotechnology for Biofuels, 2014, 7, 156.	6.2	61
84	Cloning and sequencing of the structural gene for the small subunit of methylamine dehydrogenase from Methylobacteriumextorquens AM1: Evidence for two tryptophan residues involved in the active center. Biochemical and Biophysical Research Communications, 1990, 172, 211-216.	2.1	60
85	MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in <i>Methylomicrobium buryatense</i> . PeerJ, 2016, 4, e2435.	2.0	59
86	New unified nomenclature for genes involved in the oxidation of methanol in Gram-negative bacteria. FEMS Microbiology Letters, 1994, 117, 103-106.	1.8	58
87	Strain IMB-1, a Novel Bacterium for the Removal of Methyl Bromide in Fumigated Agricultural Soils. Applied and Environmental Microbiology, 1998, 64, 2899-2905.	3.1	58
88	Reconstruction of C3 and C4 metabolism in Methylobacterium extorquens AM1 using transposon mutagenesis. Microbiology (United Kingdom), 2003, 149, 601-609.	1.8	55
89	Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch. Microbiology (United Kingdom), 2004, 150, 9-19.	1.8	55
90	Promoters and transcripts for genes involved in methanol oxidation in Methylobacterium extorquens AM1. Microbiology (United Kingdom), 2003, 149, 1033-1040.	1.8	54

#	Article	IF	CITATIONS
91	Implementation of Microarrays for <i>Methylobacterium extorquens</i> AM1. OMICS A Journal of Integrative Biology, 2007, 11, 325-340.	2.0	54
92	Metabolite profiling analysis of <i>Methylobacterium extorquens</i> AM1 by comprehensive twoâ€dimensional gas chromatography coupled with timeâ€ofâ€flight mass spectrometry. Biotechnology and Bioengineering, 2008, 99, 929-940.	3.3	53
93	Poly-β-Hydroxybutyrate Biosynthesis in the Facultative Methylotroph Methylobacterium extorquens AM1: Identification and Mutation of gap11 , gap20 , and phaR. Journal of Bacteriology, 2002, 184, 6174-6181.	2.2	52
94	Analysis of sMMO-containing Type I methanotrophs in Lake Washington sediment. Environmental Microbiology, 2002, 4, 517-524.	3.8	52
95	Cell-to-Cell Heterogeneity in Growth Rate and Gene Expression in <i>Methylobacterium extorquens</i> AM1. Journal of Bacteriology, 2007, 189, 7127-7133.	2.2	52
96	Quantification of central metabolic fluxes in the facultative methylotrophmethylobacterium extorquens AM1 using13C-label tracing and mass spectrometry. Biotechnology and Bioengineering, 2003, 84, 45-55.	3.3	50
97	A Systems Biology Approach Uncovers Cellular Strategies Used by Methylobacterium extorquens AM1 During the Switch from Multi- to Single-Carbon Growth. PLoS ONE, 2010, 5, e14091.	2.5	50
98	Genetic Characterization of the CarotenoidBiosynthetic Pathway in Methylobacterium extorquens AM1 andIsolation of a ColorlessMutant. Applied and Environmental Microbiology, 2003, 69, 7563-7566.	3.1	49
99	The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Metabolic Engineering, 2017, 42, 43-51.	7.0	49
100	Methylosarcina lacus sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2345-2350.	1.7	47
101	Marine Bacterial Degradation of Brominated Methanes. Environmental Science & Technology, 1997, 31, 3188-3192.	10.0	46
102	Novel Methylotrophy Genes of Methylobacterium extorquens AM1 Identified by using Transposon Mutagenesis Including a Putative Dihydromethanopterin Reductase. Journal of Bacteriology, 2003, 185, 669-673.	2.2	46
103	Analysis of Gene Islands Involved in Methanopterin-Linked C 1 Transfer Reactions Reveals New Functions and Provides Evolutionary Insights. Journal of Bacteriology, 2005, 187, 4607-4614.	2.2	46
104	Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria. Extremophiles, 2011, 15, 653-663.	2.3	45
105	Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance. Biotechnology for Biofuels, 2016, 9, 84.	6.2	42
106	Expression of Individual Copies of Methylococcus capsulatus Bath Particulate Methane Monooxygenase Genes. Journal of Bacteriology, 2001, 183, 1810-1812.	2.2	41
107	Alternative Route for Glyoxylate Consumption during Growth on Two-Carbon Compounds by Methylobacterium extorquens AM1. Journal of Bacteriology, 2010, 192, 1813-1823.	2.2	39
108	Methane consumption in Framvaren, an anoxic marine fjord1. Limnology and Oceanography, 1983, 28, 1247-1251.	3.1	38

#	Article	IF	CITATIONS
109	Functioning <i>in situ</i> : gene expression in <i>Methylotenera mobilis</i> in its native environment as assessed through transcriptomics. ISME Journal, 2010, 4, 388-398.	9.8	38
110	Multiphyletic origins of methylotrophy in <scp><i>A</i></scp> <i>lphaproteobacteria</i> , exemplified by comparative genomics of <scp>L</scp> ake <scp>W</scp> ashington isolates. Environmental Microbiology, 2015, 17, 547-554.	3.8	38
111	Molecular analysis of mxbD and mxbM, a putative sensor-regulator pair required for oxidation of methanol in Methylobacterium extorquens AM1. Microbiology (United Kingdom), 1997, 143, 1737-1744.	1.8	37
112	Dissimilative Iron Reduction by the Marine Eubacterium Alteromonas putrefaciens Strain 200. Water Science and Technology, 1988, 20, 69-79.	2.5	33
113	pqqA is not required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1. Microbiology (United Kingdom), 1998, 144, 183-191.	1.8	32
114	QscR, a LysR-Type Transcriptional Regulator and CbbR Homolog, Is Involved in Regulation of the Serine Cycle Genes in Methylobacterium extorquens AM1. Journal of Bacteriology, 2003, 185, 1229-1235.	2.2	32
115	A Mutagenic Screen Identifies a TonB-Dependent Receptor Required for the Lanthanide Metal Switch in the Type I Methanotroph "Methylotuvimicrobium buryatense―5GB1C. Journal of Bacteriology, 2019, 201, •	2.2	32
116	Expressed Genome of <i>Methylobacillus flagellatus</i> as Defined through Comprehensive Proteomics and New Insights into Methylotrophy. Journal of Bacteriology, 2010, 192, 4859-4867.	2.2	31
117	Core Metabolism Shifts during Growth on Methanol versus Methane in the Methanotroph <i>Methylomicrobium buryatense</i> 5GB1. MBio, 2019, 10, .	4.1	31
118	Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis. Archives of Microbiology, 1984, 140, 27-33.	2.2	30
119	MALDI-TOF Analysis of Polymerase Chain Reaction Products from Methanotrophic Bacteria. Analytical Chemistry, 1998, 70, 2693-2698.	6.5	30
120	Labrys methylaminiphilus sp. nov., a novel facultatively methylotrophic bacterium from a freshwater lake sediment. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1247-1253.	1.7	30
121	Global Whole-Cell FTICR Mass Spectrometric Proteomics Analysis of the Heat Shock Response in the Radioresistant BacteriumDeinococcusradiodurans. Journal of Proteome Research, 2005, 4, 709-718.	3.7	30
122	QscR-Mediated Transcriptional Activation of Serine Cycle Genes in Methylobacterium extorquens AM1. Journal of Bacteriology, 2005, 187, 7511-7517.	2.2	29
123	Quorum Sensing in a Methane-Oxidizing Bacterium. Journal of Bacteriology, 2017, 199, .	2.2	29
124	Cloning and characterization of corA, a gene encoding a copper-repressible polypeptide in the type I methanotroph, Methylomicrobium albus BG8. FEMS Microbiology Letters, 2006, 148, 169-174.	1.8	28
125	Methanotrophic populations in estuarine sediment from Newport Bay, California. FEMS Microbiology Letters, 2005, 250, 287-293.	1.8	27
126	HspR is a global negative regulator of heat shock gene expression in Deinococcus radiodurans. Molecular Microbiology, 2005, 55, 1579-1590.	2.5	27

#	Article	IF	CITATIONS
127	Physiological analysis of Methylobacterium extorquens AM1 grown in continuous and batch cultures. Archives of Microbiology, 2006, 186, 139-149.	2.2	26
128	Sequence and characterization ofmxaB, a response regulator involved in regulation of methanol oxidation, and ofmxaW, a methanol-regulated gene inMethylobacterium extorquensAM1. FEMS Microbiology Letters, 1998, 160, 119-124.	1.8	25
129	Identification of Genes Involved in the Glyoxylate Regeneration Cycle in Methylobacterium extorquens AM1, Including Two New Genes, meaC and meaD. Journal of Bacteriology, 2005, 187, 1523-1526.	2.2	25
130	CcrR, a TetR Family Transcriptional Regulator, Activates the Transcription of a Gene of the Ethylmalonyl Coenzyme A Pathway in Methylobacterium extorquens AM1. Journal of Bacteriology, 2012, 194, 2802-2808.	2.2	25
131	Gas chromatography–mass spectrometry with chemometric analysis for determining 12C and 13C labeled contributions in metabolomics and 13C flux analysis. Journal of Chromatography A, 2012, 1240, 156-164.	3.7	25
132	Involvement of Two Putative Alternative Sigma Factors in Stress Response of the Radioresistant Bacterium Deinococcus radiodurans. Journal of Bacteriology, 2002, 184, 6182-6189.	2.2	24
133	The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges. Biodesign Research, 2020, 2020, .	1.9	24
134	Characterization of a new marine methylotroph. FEMS Microbiology Letters, 1984, 21, 247-251.	1.8	23
135	PqqC/D, which converts a biosynthetic intermediate to pyrroloquinoline quinone. Biochemical and Biophysical Research Communications, 2002, 299, 268-272.	2.1	23
136	Global Transcriptional and Proteomic Analysis of the Sig1 Heat Shock Regulon of Deinococcus radiodurans. Journal of Bacteriology, 2005, 187, 3339-3351.	2.2	23
137	Tundrenone: An Atypical Secondary Metabolite from Bacteria with Highly Restricted Primary Metabolism. Journal of the American Chemical Society, 2018, 140, 2002-2006.	13.7	23
138	Study of Copper Accumulation by the Type I MethanotrophMethylomicrobium albusBG8. Environmental Science & Technology, 1996, 30, 802-809.	10.0	22
139	Overexpression of a heterologous protein, haloalkane dehalogenase, in a poly-?-hydroxybutyrate-deficient strain of the facultative methylotrophMethylobacterium extorquens AM1. Biotechnology and Bioengineering, 2003, 81, 263-268.	3.3	22
140	Highly Divergent Genes for Methanopterin-Linked C 1 Transfer Reactions in Lake Washington, Assessed via Metagenomic Analysis and mRNA Detection. Applied and Environmental Microbiology, 2005, 71, 8846-8854.	3.1	22
141	Novel Dephosphotetrahydromethanopterin Biosynthesis Genes Discovered via Mutagenesis in Methylobacterium extorquens AM1. Journal of Bacteriology, 2005, 187, 2508-2512.	2.2	22
142	An Integrated Proteomics/Transcriptomics Approach Points to Oxygen as the Main Electron Sink for Methanol Metabolism in Methylotenera mobilis. Journal of Bacteriology, 2011, 193, 4758-4765.	2.2	22
143	Development and application of polymerase chain reaction primers based on fhcD for environmental detection of methanopterin-linked C1-metabolism in bacteria. Environmental Microbiology, 2005, 7, 1269-1274.	3.8	21
144	Microorganisms for MEMS. Journal of Microelectromechanical Systems, 2007, 16, 429-444.	2.5	21

#	Article	IF	CITATIONS
145	Elucidation of the Role of the Methylene-Tetrahydromethanopterin Dehydrogenase MtdA in the Tetrahydromethanopterin-Dependent Oxidation Pathway in Methylobacterium extorquens AM1. Journal of Bacteriology, 2013, 195, 2359-2367.	2.2	20
146	Comparative transcriptomics in three <i>Methylophilaceae</i> species uncover different strategies for environmental adaptation. PeerJ, 2013, 1, e115.	2.0	20
147	Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria. Microorganisms, 2015, 3, 94-112.	3.6	19
148	Development of a defined medium supporting rapid growth for Deinococcus radiodurans and analysis of metabolic capacities. Applied Microbiology and Biotechnology, 2006, 72, 1074-1082.	3.6	18
149	Measurement of Respiration Rates of Methylobacterium extorquens AM1 Cultures by Use of a Phosphorescence-Based Sensor. Applied and Environmental Microbiology, 2006, 72, 1692-1695.	3.1	18
150	Direct measurement of oxygen consumption rates from attached and unattached cells in a reversibly sealed, diffusionally isolated sample chamber. Advances in Bioscience and Biotechnology (Print), 2010, 01, 398-408.	0.7	18
151	MtdC, a Novel Class of Methylene Tetrahydromethanopterin Dehydrogenases. Journal of Bacteriology, 2005, 187, 6069-6074.	2.2	17
152	Effect of fixation-resin combinations and ruthenium red on elucidating outer envelope structure and surface morphology of two methanotrophic bacteria. Journal of Electron Microscopy Technique, 1990, 14, 52-62.	1.1	16
153	Sequence of the gene for a NAD(P)-dependent formaldehyde dehydrogenase (class III alcohol) Tj ETQq1 1 0.7843 1994, 121, 349-355.	14 rgBT /(1.8	Overlock 10 16
154	Interface of an Array of Five Capillaries with an Array of One-Nanoliter Wells for High-Resolution Electrophoretic Analysis as an Approach to High-Throughput Chemical Cytometry. Analytical Chemistry, 2008, 80, 7631-7634.	6.5	16
155	Quantifying Methane and Methanol Metabolism of " <i>Methylotuvimicrobium buryatense</i> ―5GB1C under Substrate Limitation. MSystems, 2019, 4, .	3.8	16
156	Population heterogeneity in Methylobacterium extorquens AM1. Microbiology (United Kingdom), 2009, 155, 2040-2048.	1.8	16
157	Ethylmalonyl Coenzyme A Mutase Operates as a Metabolic Control Point in Methylobacterium extorquens AM1. Journal of Bacteriology, 2015, 197, 727-735.	2.2	15
158	A Computational Framework for Identifying Promoter Sequences in Nonmodel Organisms Using RNA-seq Data Sets. ACS Synthetic Biology, 2021, 10, 1394-1405.	3.8	15
159	Analysis of fae and fhcD Genes in Mono Lake, California. Applied and Environmental Microbiology, 2005, 71, 8949-8953.	3.1	14
160	Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1. Journal of Bacteriology, 2015, 197, 2020-2026.	2.2	14
161	Microbial Control by Low Oxygen and Low Relative Humidity Environment. Studies in Conservation, 1990, 35, 222.	1.1	13
162	Nitrogen metabolism in Xanthobacter H4-14. Archives of Microbiology, 1983, 136, 219-221.	2.2	11

#	Article	IF	CITATIONS
163	Identification of an upstream regulatory sequence that mediates the transcription of mox genes in Methylobacterium extorquens AM1. Microbiology (United Kingdom), 2005, 151, 3723-3728.	1.8	11
164	Evidence for plasmid-encoded manganese oxidation in a marine pseudomonad. FEMS Microbiology Letters, 1983, 19, 1-6.	1.8	10
165	Difference in C3–C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1. BMC Microbiology, 2016, 16, 156.	3.3	10
166	Interspecies Chemical Signaling in a Methane-Oxidizing Bacterial Community. Applied and Environmental Microbiology, 2019, 85, .	3.1	10
167	The Entner-Doudoroff Pathway Is an Essential Metabolic Route for Methylotuvimicrobium buryatense 5GB1C. Applied and Environmental Microbiology, 2021, 87, .	3.1	10
168	Non-targeted determination of 13C-labeling in the Methylobacterium extorquens AM1 metabolome using the two-dimensional mass cluster method and principal component analysis. Journal of Chromatography A, 2016, 1432, 111-121.	3.7	8
169	Plasmid analysis in pink facultative methylotrophic bacteria using a modified acetone-alkaline hydrolysis method. FEMS Microbiology Letters, 1989, 60, 125-130.	1.8	7
170	Comprehensive discovery of 13C labeled metabolites in the bacterium Methylobacterium extorquens AM1 using gas chromatography–mass spectrometry. Journal of Chromatography A, 2013, 1317, 175-185.	3.7	7
171	Enzyme engineering and <i>in vivo</i> testing of a formate reduction pathway. Synthetic Biology, 2021, 6, ysab020.	2.2	7
172	Cycling Single-Carbon Compounds: from Omics to Novel Concepts. Microbe Magazine, 2013, 8, 395-400.	0.4	7
173	Identification of a promoter region formxaF(moxF) from the type I methanotroph,Methylobacter albusBG8. FEMS Microbiology Letters, 1994, 121, 343-348.	1.8	5
174	Two-Photon Lithography of Platinum-Porphyrin Oxygen Sensors. IEEE Sensors Journal, 2007, 7, 931-936.	4.7	4
175	Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. FEMS Microbiology Letters, 1998, 166, 1-7.	1.8	4
176	Algorithm Advancements for the Measurement of Single Cell Oxygen Consumption Rates. , 2007, , .		3
177	An RNA polymerase preparation from Methylobacterium extorquens AM1 capable of transcribing from a methylotrophic promoter. Microbiology (United Kingdom), 1998, 144, 177-182.	1.8	2
178	Automated Classification of Macrophage Membrane Integrity using a Fluorescent Live/Dead Stain. , 2007, , .		2
179	Single Cell Methods for Methane Oxidation Analysis. Methods in Enzymology, 2011, 495, 149-166.	1.0	2
180	Molecular approaches to problems in biogeochemical cycling. Antonie Van Leeuwenhoek, 1989, 55, 7-14.	1.7	1

#	Article	IF	CITATIONS
181	The coppers of particulate methane monooxygenase in methanotrohic bacteria. Journal of Inorganic Biochemistry, 1992, 47, 10.	3.5	1
182	[16] Genetics of bacterial quinoproteins. Methods in Enzymology, 1995, 258, 217-227.	1.0	1
183	Giving E. coli a newfound appetite for formate. Nature Metabolism, 2020, 2, 219-220.	11.9	1
184	Cultivation techniques to study lanthanide metal interactions in the haloalkaliphilic Type I methanotroph "Methylotuvimicrobium buryatense―5GB1C. Methods in Enzymology, 2021, 650, 237-259.	1.0	1