Leslie M Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3327485/publications.pdf Version: 2024-02-01

LESUE M SHAW

#	Article	IF	CITATIONS
1	Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Molecular and Cellular Endocrinology, 2021, 527, 111213.	3.2	36
2	TBK1 has a new Akt. Journal of Biological Chemistry, 2021, 297, 101244.	3.4	0
3	Beclin 1 Promotes Endosome Recruitment of Hepatocyte Growth Factor Tyrosine Kinase Substrate to Suppress Tumor Proliferation. Cancer Research, 2020, 80, 249-262.	0.9	21
4	Selenium detoxification is required for cancer-cell survival. Nature Metabolism, 2020, 2, 603-611.	11.9	97
5	Insulin Receptor Substrate-1 (IRS-1) and IRS-2 expression levels are associated with prognosis in non-small cell lung cancer (NSCLC). PLoS ONE, 2019, 14, e0220567.	2.5	21
6	Identification of a Novel Invasion-Promoting Region in Insulin Receptor Substrate 2. Molecular and Cellular Biology, 2018, 38, .	2.3	13
7	IRS2 mutations linked to invasion in pleomorphic invasive lobular carcinoma. JCI Insight, 2018, 3, .	5.0	18
8	Differential involvement of the microtubule cytoskeleton in insulin receptor substrate 1 (IRS-1) and IRS-2 signaling to AKT determines the response to microtubule disruption in breast carcinoma cells. Journal of Biological Chemistry, 2017, 292, 7806-7816.	3.4	18
9	RUNX1 and breast cancer. Oncotarget, 2017, 8, 36934-36935.	1.8	16
10	An autophagy-independent function of Beclin 1 in cancer. Molecular and Cellular Oncology, 2016, 3, e1030539.	0.7	13
11	Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer. PLoS ONE, 2016, 11, e0150564.	2.5	13
12	Runx1 is associated with breast cancer progression in MMTVâ€PyMT transgenic mice and its depletion in vitro inhibits migration and invasion. Journal of Cellular Physiology, 2015, 230, 2522-2532.	4.1	63
13	Insulin Receptor Substrate 2-mediated Phosphatidylinositol 3-kinase Signaling Selectively Inhibits Glycogen Synthase Kinase 3β to Regulate Aerobic Glycolysis. Journal of Biological Chemistry, 2014, 289, 18603-18613.	3.4	43
14	<i>Drosophila</i> Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity. Journal of Cell Biology, 2014, 206, 289-305.	5.2	104
15	Regulated Splicing of the α6 Integrin Cytoplasmic Domain Determines the Fate of Breast Cancer Stem Cells. Cell Reports, 2014, 7, 747-761.	6.4	103
16	Abstract B043: Role of IRS2-microtubule interactions in breast carcinoma cell survival. , 2013, , .		0
17	Membrane localization of insulin receptor substrate-2 (IRS-2) is associated with decreased overall survival in breast cancer. Breast Cancer Research and Treatment, 2011, 130, 759-772.	2.5	11
18	The insulin receptor substrate (IRS) proteins. Cell Cycle, 2011, 10, 1750-1756.	2.6	136

LESLIE M SHAW

#	Article	IF	CITATIONS
19	Insulin Receptor Substrate-2 Regulates Aerobic Glycolysis in Mouse Mammary Tumor Cells via Glucose Transporter 1. Journal of Biological Chemistry, 2009, 284, 2031-2037.	3.4	37
20	IRS-1 and microRNAs: Partners in growth regulation. Cell Cycle, 2009, 8, 2484-2488.	2.6	0
21	Hypoxia Regulates Insulin Receptor Substrate-2 Expression to Promote Breast Carcinoma Cell Survival and Invasion. Cancer Research, 2009, 69, 8894-8901.	0.9	37
22	Expression and function of the insulin receptor substrate proteins in cancer. Cell Communication and Signaling, 2009, 7, 14.	6.5	147
23	Divergent Roles for IRS-1 and IRS-2 in Breast Cancer Metastasis. Cell Cycle, 2007, 6, 631-637.	2.6	91
24	Suppression of Insulin Receptor Substrate 1 (IRS-1) Promotes Mammary Tumor Metastasis. Molecular and Cellular Biology, 2006, 26, 9338-9351.	2.3	79
25	Involvement of Insulin Receptor Substrate 2 in Mammary Tumor Metastasis. Molecular and Cellular Biology, 2004, 24, 9726-9735.	2.3	110
26	Identification of Insulin Receptor Substrate 1 (IRS-1) and IRS-2 as Signaling Intermediates in the α6β4 Integrin-Dependent Activation of Phosphoinositide 3-OH Kinase and Promotion of Invasion. Molecular	2.3	165

and Cellular Biology, 2001, 21, 5082-5093.