
Miyuki Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3326664/publications.pdf Version: 2024-02-01

Μινιικι ςλτο

#	Article	IF	CITATIONS
1	Dynamic rearrangement and autophagic degradation of mitochondria during spermiogenesis in the liverwort Marchantia polymorpha. Cell Reports, 2022, 39, 110975.	6.4	7
2	Molecular mechanisms and physiological functions of mitophagy. EMBO Journal, 2021, 40, e104705.	7.8	553
3	Degradation of paternal mitochondria via mitophagy. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129886.	2.4	9
4	Syntaxin 17, an ancient SNARE paralog, plays different and conserved roles in different organisms. Journal of Cell Science, 2021, 134, .	2.0	6
5	ERdj8 governs the size of autophagosomes during the formation process. Journal of Cell Biology, 2020, 219, .	5.2	14
6	SFT-4/Surf4 control ER export of soluble cargo proteins and participate in ER exit site organization. Journal of Cell Biology, 2018, 217, 2073-2085.	5.2	52
7	The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans. Nature Cell Biology, 2018, 20, 81-91.	10.3	44
8	Monitoring of Paternal Mitochondrial Degradation in Caenorhabditis elegans. Methods in Molecular Biology, 2017, 1759, 133-140.	0.9	2
9	Multiple ways to prevent transmission of paternal mitochondrial DNA for maternal inheritance in animals. Journal of Biochemistry, 2017, 162, 247-253.	1.7	41
10	REI-1, a Novel Rab11 GEF with a SH3BP5 domain. Communicative and Integrative Biology, 2016, 9, e1208325.	1.4	2
11	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
12	REI/SH3BP5 protein family: New GEFs for Rab11. Cell Cycle, 2016, 15, 767-769.	2.6	4
13	REI-1 Is a Guanine Nucleotide Exchange Factor Regulating RAB-11 Localization and Function in C.Âelegans Embryos. Developmental Cell, 2015, 35, 211-221.	7.0	48
14	Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy, 2015, 11, 9-27.	9.1	119
15	<i>Caenorhabditiselegans</i> chaperonin CCT/TRiC is required for actin and tubulin biogenesis and microvillus formation in intestinal epithelial cells. Molecular Biology of the Cell, 2014, 25, 3095-3104.	2.1	37
16	Fertilization-induced K63-linked ubiquitylation mediates clearance of maternal membrane proteins. Development (Cambridge), 2014, 141, 1324-1331.	2.5	29
17	Rer1p regulates the ER retention of immature rhodopsin and modulates its intracellular trafficking. Scientific Reports, 2014, 4, 5973.	3.3	19
18	C. elegans as a model for membrane traffic. WormBook, 2014, , 1-47.	5.3	70

Μιγυκι Sato

#	Article	IF	CITATIONS
19	Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1979-1984.	4.1	206
20	Dynamic Regulation of Autophagy and Endocytosis for Cell Remodeling During Early Development. Traffic, 2013, 14, 479-486.	2.7	30
21	Fertilization Triggers Remodeling of Cellular Components via Lysosomal Degradation. Journal of the Society of Japanese Women Scientists, 2013, 13, 9-13.	0.0	0
22	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
23	Maternal inheritance of mitochondrial DNA. Autophagy, 2012, 8, 424-425.	9.1	78
24	<i>Caenorhabditis elegans</i> SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Molecular Biology of the Cell, 2011, 22, 2579-2587.	2.1	53
25	Degradation of Paternal Mitochondria by Fertilization-Triggered Autophagy in <i>C. elegans</i> Embryos. Science, 2011, 334, 1141-1144.	12.6	394
26	Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1139-1144.	7.1	75
27	Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO Journal, 2008, 27, 1183-1196.	7.8	160
28	Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in <i>Caenorhabditis elegans</i> . Journal of Cell Science, 2008, 121, 3177-3186.	2.0	90
29	The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature, 2007, 448, 366-369.	27.8	307
30	Dynamic Regulation of Caveolin-1 Trafficking in the Germ Line and Embryo of Caenorhabditis elegans. Molecular Biology of the Cell, 2006, 17, 3085-3094.	2.1	106
31	Intracellular trafficking. WormBook, 2006, , 1-9.	5.3	30
32	Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nature Cell Biology, 2005, 7, 559-569.	10.3	144
33	Endoplasmic Reticulum Quality Control of Unassembled Iron Transporter Depends on Rer1p-mediated Retrieval from the Golgi. Molecular Biology of the Cell, 2004, 15, 1417-1424.	2.1	46
34	Rer1p, a Retrieval Receptor for ER Membrane Proteins, Recognizes Transmembrane Domains in Multiple Modes. Molecular Biology of the Cell, 2003, 14, 3605-3616.	2.1	90
35	Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response. Biochemical and Biophysical Research Communications, 2002, 296, 560-567.	2.1	24
36	Purification, crystallization and preliminary X-ray diffraction analysis of the yeast Sec12Δp protein, a guanine nucleotide-exchange factor involved in vesicle transport. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 893-895.	2.5	1

Μιγυκι Sato

#	ARTICLE	IF	CITATIONS
37	YeastSaccharomyces cerevisiaehas twocis-prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. Genes To Cells, 2001, 6, 495-506.	1.2	77
38	Rer1p, a Retrieval Receptor for Endoplasmic Reticulum Membrane Proteins, Is Dynamically Localized to the Golgi Apparatus by Coatomer. Journal of Cell Biology, 2001, 152, 935-944.	5.2	135
39	The Yeast <i>RER2</i> Gene, Identified by Endoplasmic Reticulum Protein Localization Mutations, Encodes <i>cis</i> -Prenyltransferase, a Key Enzyme in Dolichol Synthesis. Molecular and Cellular Biology, 1999, 19, 471-483.	2.3	150
40	The <i>Escherichia coli</i> Homologue of Yeast Rer2, a Key Enzyme of Dolichol Synthesis, Is Essential for Carrier Lipid Formation in Bacterial Cell Wall Synthesis. Journal of Bacteriology, 1999, 181, 2733-2738.	2.2	92