Wan-Xi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/332500/publications.pdf

Version: 2024-02-01

		117625	182427
112	3,427	34	51
papers	citations	h-index	g-index
114	114	114	4465
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	How vitamin E and its derivatives regulate tumour cells via the MAPK signalling pathway?'. Gene, 2022, 808, 145998.	2.2	8
2	What Does Androgen Receptor Signaling Pathway in Sertoli Cells During Normal Spermatogenesis Tell Us?. Frontiers in Endocrinology, 2022, 13, 838858.	3.5	14
3	The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells?. Histology and Histopathology, 2022, , 18457.	0.7	3
4	Regulation of spermatogonial stem cell self-renewal and proliferation in mammals Histology and Histopathology, 2022, , 18461.	0.7	2
5	Follicle-stimulating hormone signaling in Sertoli cells: a licence to the early stages of spermatogenesis. Reproductive Biology and Endocrinology, 2022, 20, .	3.3	12
6	Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene, 2021, 764, 145080.	2.2	3
7	PIWIs maintain testis apoptosis to remove abnormal germ cells in Eriocheir sinensis. Reproduction, 2021, 162, 193-207.	2.6	2
8	Kinesin 12 (KIF15) contributes to the development and tumorigenicity of prostate cancer. Biochemical and Biophysical Research Communications, 2021, 576, 7-14.	2.1	6
9	Extracellular and Intracellular Skeletons: How Do They Involve in Apoptosis. DNA and Cell Biology, 2021, , .	1.9	1
10	Engineered nanomaterials induce alterations in biological barriers: focus on paracellular permeability. Nanomedicine, 2021, 16, 2725-2741.	3.3	7
11	Titanium dioxide nanoparticles perturb the blood-testis barrier via disruption of actin-based cell adhesive function. Aging, 2021, 13, 25440-25452.	3.1	12
12	Inhibition of kinesin motor protein KIFC1 by AZ82 induces multipolar mitosis and apoptosis in prostate cancer cell. Gene, 2020, 760, 144989.	2.2	13
13	Molecular insights into hormone regulation via signaling pathways in Sertoli cells: With discussion on infertility and testicular tumor. Gene, 2020, 753, 144812.	2.2	22
14	KIF3A regulates the Wnt \hat{I}^2 -catenin pathway via transporting \hat{I}^2 -catenin during spermatogenesis in Eriocheir sinensis. Cell and Tissue Research, 2020, 381, 527-541.	2.9	9
15	Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation. Nanomedicine, 2020, 15, 1419-1435.	3.3	20
16	Bone morphogenetic protein 2 (BMP2) mediates spermatogenesis in Chinese mitten crab Eriocheir sinensis by regulating kinesin motor KIFC1 expression. Gene, 2020, 754, 144848.	2.2	5
17	The dynamics and regulation of microfilament during spermatogenesis. Gene, 2020, 744, 144635.	2.2	20
18	Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death and Disease, 2019, 10, 541.	6.3	139

#	Article	IF	CITATIONS
19	C-terminal kinesin motor es-KIFC1 regulates nuclear formation during spermiogenesis in Chinese mitten crab Eriocheir sinensis. Gene, 2019, 719, 144074.	2.2	16
20	Kinesin-14 motor protein KIFC1 participates in DNA synthesis and chromatin maintenance. Cell Death and Disease, 2019, 10, 402.	6.3	19
21	The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene, 2019, 706, 201-210.	2.2	61
22	Kinesins in MAPK cascade: How kinesin motors are involved in the MAPK pathway?. Gene, 2019, 684, 1-9.	2.2	69
23	KIFC1 is essential for normal spermatogenesis and its depletion results in early germ cell apoptosis in the Kuruma shrimp, Penaeus (Marsupenaeus) japonicus. Aging, 2019, 11, 12773-12792.	3.1	9
24	The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility. Gene, 2018, 660, 28-40.	2.2	36
25	The role of FSH and TGF- \hat{l}^2 superfamily in follicle atresia. Aging, 2018, 10, 305-321.	3.1	60
26	Nanoparticles induce apoptosis via mediating diverse cellular pathways. Nanomedicine, 2018, 13, 2939-2955.	3.3	22
27	The multiple functions of kinesin-4 family motor protein KIF4 and its clinical potential. Gene, 2018, 678, 90-99.	2.2	33
28	Roles of three Es-Caspases during spermatogenesis and Cadmium-induced apoptosis in Eriocheir sinensis. Aging, 2018, 10, 1146-1165.	3.1	23
29	The characterization and potential roles of bone morphogenetic protein 7 during spermatogenesis in Chinese mitten crab Eriocheir sinensis. Gene, 2018, 673, 119-129.	2.2	13
30	Environmental factors contributed to circannual rhythm of semen quality. Chronobiology International, 2017, 34, 411-425.	2.0	19
31	A novel role of KIF3b in the seminoma cell cycle. Experimental Cell Research, 2017, 352, 95-103.	2.6	13
32	Mitochondrial prohibitin and its ubiquitination during spermatogenesis of the swimming crab Charybdis japonica. Gene, 2017, 627, 137-148.	2.2	18
33	Kinesins in spermatogenesisâ€. Biology of Reproduction, 2017, 96, 267-276.	2.7	42
34	Regulation of development by SOX proteins. Seminars in Cell and Developmental Biology, 2017, 63, 1.	5.0	3
35	KIFC1 and myosin Va: two motors for acrosomal biogenesis and nuclear shaping during spermiogenesis of Portunus trituberculatus. Cell and Tissue Research, 2017, 369, 625-640.	2.9	18
36	Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. Journal of Cell Science, 2017, 130, 2097-2110.	2.0	88

#	Article	IF	CITATIONS
37	Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development?. Seminars in Cell and Developmental Biology, 2017, 63, 13-22.	5.0	77
38	SOX-mediated molecular crosstalk during the progression of tumorigenesis. Seminars in Cell and Developmental Biology, 2017, 63, 23-34.	5.0	37
39	Factors and pathways involved in capacitation: how are they regulated?. Oncotarget, 2017, 8, 3600-3627.	1.8	81
40	Calcium influx and sperm-evoked calcium responses during oocyte maturation and egg activation. Oncotarget, 2017, 8, 89375-89390.	1.8	13
41	Nucleocytoplasmic shuttling of SOX14A and SOX14B transcription factors. Oncotarget, 2017, 8, 46955-46968.	1.8	4
42	KIFC1 is essential for acrosome formation and nuclear shaping during spermiogenesis in the lobster <i>Procambarus clarkii</i> . Oncotarget, 2017, 8, 36082-36098.	1.8	11
43	Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget, 2017, 8, 41679-41689.	1.8	113
44	Minus end-directed kinesin-14 KIFC1 regulates the positioning and architecture of the Golgi apparatus. Oncotarget, 2017, 8, 36469-36483.	1.8	22
45	Myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability. Oncotarget, 2017, 8, 54654-54671.	1.8	4
46	C-terminal kinesin motor KIFC1 participates in facilitating proper cell division of human seminoma. Oncotarget, 2017, 8, 61373-61384.	1.8	19
47	Prohibitin-mediated mitochondrial ubiquitination during spermiogenesis in Chinese mitten crab Eriocheir sinensis. Oncotarget, 2017, 8, 98782-98797.	1.8	11
48	Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget, 2016, 7, 40882-40903.	1.8	75
49	Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels. Beilstein Journal of Nanotechnology, 2016, 7, 675-684.	2.8	33
50	Chromokinesin: Kinesin superfamily regulating cell division through chromosome and spindle. Gene, 2016, 589, 43-48.	2.2	16
51	A histological study of testis development and ultrastructural features of spermatogenesis in cultured Acrossocheilus fasciatus. Tissue and Cell, 2016, 48, 49-62.	2.2	14
52	Small non-coding RNAs and their associated proteins in spermatogenesis. Gene, 2016, 578, 141-157.	2.2	49
53	Regulators in the apoptotic pathway during spermatogenesis: Killers or guards?. Gene, 2016, 582, 97-111.	2.2	49
54	Molecular cloning, expression pattern, and chemical analysis of heat shock protein 70 (HSP70) in the mudskipper Boleophthalmus pectinirostris: Evidence for its role in regulating spermatogenesis. Gene, 2016, 575, 331-338.	2.2	14

#	Article	IF	CITATIONS
55	Myosin superfamily: The multi-functional and irreplaceable factors in spermatogenesis and testicular tumors. Gene, 2016, 576, 195-207.	2.2	28
56	The potential function of prohibitin during spermatogenesis in Chinese fire-bellied newt Cynops orientalis. Cell and Tissue Research, 2016, 363, 805-822.	2.9	12
57	KIFC1: a promising chemotherapy target for cancer treatment?. Oncotarget, 2016, 7, 48656-48670.	1.8	46
58	Myosins as fundamental components during tumorigenesis: diverse and indispensable. Oncotarget, 2016, 7, 46785-46812.	1.8	58
59	Tracking extraction of blastomere for embryo biopsy. , 2015, , .		9
60	Cloning, characterization and cadmium inducibility of metallothionein in the testes of the mudskipper Boleophthalmus pectinirostris. Ecotoxicology and Environmental Safety, 2015, 119, 1-8.	6.0	24
61	SOX family transcription factors involved in diverse cellular events during development. European Journal of Cell Biology, 2015, 94, 547-563.	3.6	135
62	Gene expression pattern of KIFC3 during spermatogenesis of the skink Eumeces chinensis. Gene, 2015, 556, 206-212.	2.2	5
63	Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene, 2015, 558, 6-24.	2.2	24
64	Mitochondrial prohibitin and its ubiquitination during crayfish Procambarus clarkii spermiogenesis. Cell and Tissue Research, 2015, 359, 679-692.	2.9	16
65	Wnt signaling in testis development: Unnecessary or essential?. Gene, 2015, 565, 155-165.	2.2	31
66	Metallothionein from Pseudosciaena crocea: expression and response to cadmium-induced injury in the testes. Ecotoxicology, 2015, 24, 779-794.	2.4	10
67	The role of epithelial tight junctions involved in pathogen infections. Molecular Biology Reports, 2014, 41, 6591-6610.	2.3	54
68	Identification and expression pattern analysis of Piwi genes during the spermiogenesis of Portunus trituberculatus. Gene, 2014, 534, 240-248.	2.2	14
69	Seasonal changes of the fatty acid composition in the hepatopancreas and vitelline gland of the gastropodOnchidium struma. Marine Biology Research, 2014, 10, 781-790.	0.7	1
70	Molecular mechanisms involved in mammalian primary sex determination. Journal of Molecular Endocrinology, 2014, 53, R21-R37.	2.5	37
71	Primary cilium: an elaborate structure that blocks cell division?. Gene, 2014, 547, 175-185.	2.2	56
72	Endometrial stromal cells and decidualized stromal cells: Origins, transformation and functions. Gene, 2014, 551, 1-14.	2.2	52

#	Article	IF	Citations
73	Molecular regulation of hypothalamus–pituitary–gonads axis in males. Gene, 2014, 551, 15-25.	2.2	90
74	Functional Analysis of KIF3A and KIF3B during Spermiogenesis of Chinese Mitten Crab Eriocheir sinensis. PLoS ONE, 2014, 9, e97645.	2.5	12
75	Characterization and expression pattern of p53 during spermatogenesis in the Chinese mitten crab Eriocheir sinensis. Molecular Biology Reports, 2013, 40, 1043-1051.	2.3	14
76	Regulation of paracellular permeability: factors and mechanisms. Molecular Biology Reports, 2013, 40, 6123-6142.	2.3	68
77	Molecular characterization and expression analysis of a KIFC1-like kinesin gene in the testis of Eumeces chinensis. Molecular Biology Reports, 2013, 40, 6645-6655.	2.3	11
78	The expression pattern of the C-terminal kinesin gene kifc1 during the spermatogenesis of Sepiella maindroni. Gene, 2013, 532, 53-62.	2.2	11
79	The SOX gene family: function and regulation in testis determination and male fertility maintenance. Molecular Biology Reports, 2013, 40, 2187-2194.	2.3	86
80	New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Molecular Biology Reports, 2013, 40, 3213-3230.	2.3	63
81	Expression and function analysis of metallothionein in the testis of Portunus trituberculatus exposed to cadmium. Aquatic Toxicology, 2013, 140-141, 1-10.	4.0	19
82	Acroframosome-Dependent KIFC1 Facilitates Acrosome Formation during Spermatogenesis in the Caridean Shrimp Exopalaemon modestus. PLoS ONE, 2013, 8, e76065.	2.5	34
83	The involvement of metallothionein in the development of aquatic invertebrate. Aquatic Toxicology, 2012, 110-111, 208-213.	4.0	60
84	Expression and function analysis of metallothionein in the testis of stone crab Charybdis japonica exposed to cadmium. Aquatic Toxicology, 2012, 124-125, 11-21.	4.0	24
85	Gene expression pattern of myosin Va during spermatogenesis of Chinese mitten crab, Eriocheir sinensis. Gene, 2012, 508, 78-84.	2.2	12
86	Gene expression profiles of prohibitin in testes of Octopus tankahkeei (ot-phb) revealing its possible role during spermiogenesis. Molecular Biology Reports, 2012, 39, 5519-5528.	2.3	14
87	Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus). Molecular Biology Reports, 2012, 39, 5589-5598.	2.3	24
88	Characterization and expression analysis of prohibitin in the testis of Chinese mitten crab Eriocheir sinensis. Molecular Biology Reports, 2012, 39, 7031-7039.	2.3	28
89	Characterization and expression pattern of KIFC1-like kinesin gene in the testis of the Macrobrachium nipponense with discussion of its relationship with structure lamellar complex (LCx) and acroframosome (AFS). Molecular Biology Reports, 2012, 39, 7591-7598.	2.3	29
90	The formation of zona radiata in Pseudosciaena crocea revealed by light and transmission electron microscopy. Micron, 2012, 43, 435-444.	2.2	8

#	Article	IF	Citations
91	Molecular characterization of a KIF3A-like kinesin gene in the testis of the Chinese fire-bellied newt Cynops orientalis. Molecular Biology Reports, 2012, 39, 4207-4214.	2.3	13
92	TGF- \hat{l}^2 superfamily: how does it regulate testis development. Molecular Biology Reports, 2012, 39, 4727-4741.	2.3	35
93	The Apoptotic Function Analysis of p53, Apaf1, Caspase3 and Caspase7 during the Spermatogenesis of the Chinese Fire-Bellied Newt Cynops orientalis. PLoS ONE, 2012, 7, e39920.	2.5	36
94	The role of actin and myosin during spermatogenesis. Molecular Biology Reports, 2011, 38, 3993-4001.	2.3	54
95	Formation of zona radiata and ultrastructural analysis of egg envelope during oogenesis of Chinese perch Siniperca chuatsi. Micron, 2010, 41, 7-14.	2.2	11
96	Ultrastructural observation on genesis and morphology of cortical granules in Macrobrachium nipponense (Crustacea, Caridea). Micron, 2010, 41, 59-64.	2.2	5
97	Molecular cloning and characterization of KIFC1-like kinesin gene (es-KIFC1) in the testis of the Chinese mitten crab Eriocheir sinensis. Comparative Biochemistry and Physiology Part A, Molecular & Comparative Physiology, 2010, 157, 123-131.	1.8	33
98	Identification and dynamic transcription of KIF3A homologue gene in spermiogenesis of Octopus tankahkeei. Comparative Biochemistry and Physiology Part A, Molecular & Entry Integrative Physiology, 2010, 157, 237-245.	1.8	17
99	Acrosome reaction in Octopus tankahkeei induced by calcium ionophore A23187 and a possible role of the acrosomal screw. Micron, 2010, 41, 39-46.	2.2	13
100	Myosin Va Participates in Acrosomal Formation and Nuclear Morphogenesis during Spermatogenesis of Chinese Mitten Crab Eriocheir sinensis. PLoS ONE, 2010, 5, e12738.	2.5	35
101	KIFC1-Like Motor Protein Associates with the Cephalopod Manchette and Participates in Sperm Nuclear Morphogenesis in Octopus tankahkeei. PLoS ONE, 2010, 5, e15616.	2.5	23
102	Immunocytochemical studies on the acroframosome during spermiogenesis of the caridean shrimpMacrobrachium nipponense(Crustacea, Natantia). Invertebrate Reproduction and Development, 2010, 54, 121-131.	0.8	19
103	Molecular cloning and characterization of KIFC1-like kinesin gene (ot-kifc1) from Octopus tankahkeei. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 156, 174-182.	1.6	16
104	Mitochondria: transportation, distribution and function during spermiogenesis. Advances in Bioscience and Biotechnology (Print), 2010, 01, 97-109.	0.7	13
105	KIFC1 participates in acrosomal biogenesis, with discussion of its importance for the perforatorium in the Chinese mitten crab Eriocheir sinensis. Cell and Tissue Research, 2009, 337, 113-123.	2.9	53
106	Development of germ cells and reproductive biology in the sipunculid <i>Phascolosoma esculenta </i> Aquaculture Research, 2009, 40, 305-314.	1.8	12
107	Fatty acid composition and analysis of freshwater caridean shrimp Macrobrachium nipponense (De) Tj ETQq1 1 ().784314 i 1.8	gBT Overlo
108	Actin-based dynamics during spermatogenesis and its significance. Journal of Zhejiang University: Science B, 2007, 8, 498-506.	2.8	43

#	Article	IF	CITATION
109	Ultrastructural Analysis of Kinesin-Related Motor Proteins During Spermatogenesis. Methods in Molecular Biology, 2007, 392, 133-141.	0.9	2
110	Comparative studies on fatty acid composition of the ovaries and hepatopancreas at different physiological stages of the Chinese mitten crab. Aquaculture, 2006, 256, 617-623.	3.5	81
111	The Molecular Motor KIFC1 Associates with a Complex Containing Nucleoporin NUP62 That Is Regulated During Development and by the Small GTPase RAN1. Biology of Reproduction, 2006, 74, 684-690.	2.7	64
112	C-Terminal Kinesin Motor KIFC1 Participates in Acrosome Biogenesis and Vesicle Transport1. Biology of Reproduction, 2003, 69, 1719-1729.	2.7	124