Amato J Giaccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3324689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term expression changes of immune-related genes in prostate cancer after radiotherapy. Cancer Immunology, Immunotherapy, 2022, 71, 839-850.	4.2	7
2	C3aR Signaling Inhibits NK-cell Infiltration into the Tumor Microenvironment in Mouse Models. Cancer Immunology Research, 2022, 10, 245-258.	3.4	7
3	Multiomics Analysis of Spatially Distinct Stromal Cells Reveals Tumor-Induced O-Glycosylation of the CDK4–pRB Axis in Fibroblasts at the Invasive Tumor Edge. Cancer Research, 2022, 82, 648-664.	0.9	9
4	The Combination of Radiotherapy and Complement C3a Inhibition Potentiates Natural Killer cell Functions Against Pancreatic Cancer. Cancer Research Communications, 2022, 2, 725-738.	1.7	5
5	Novel Aza-podophyllotoxin derivative induces oxidative phosphorylation and cell death via AMPK activation in triple-negative breast cancer. British Journal of Cancer, 2021, 124, 604-615.	6.4	16
6	Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nature Biotechnology, 2021, 39, 357-367.	17.5	163
7	Wounds Inhibit Tumor Growth In Vivo. Annals of Surgery, 2021, 273, 173-180.	4.2	6
8	Lipid droplet storage promotes murine pancreatic tumor growth. Oncology Reports, 2021, 45, .	2.6	3
9	X-change symposium: status and future of modern radiation oncology—from technology to biology. Radiation Oncology, 2021, 16, 27.	2.7	1
10	A <scp>NIR</scp> fluorescent smart probe for imaging tumor hypoxia. Cancer Reports, 2021, 4, e1384.	1.4	9
11	Neutralization of PD-L2 is Essential for Overcoming Immune Checkpoint Blockade Resistance in Ovarian Cancer. Clinical Cancer Research, 2021, 27, 4435-4448.	7.0	35
12	Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination–deficient cancer models. Journal of Clinical Investigation, 2021, 131, .	8.2	20
13	The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nature Communications, 2021, 12, 4308.	12.8	45
14	Irradiation at Ultra-High (FLASH) Dose Rates Reduces Acute Normal Tissue Toxicity in the Mouse Gastrointestinal System. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1250-1261.	0.8	53
15	Increased tissue stiffness triggers contractile dysfunction and telomere shortening in dystrophic cardiomyocytes. Stem Cell Reports, 2021, 16, 2169-2181.	4.8	23
16	Fiber finding algorithm using stepwise tracing to identify biopolymer fibers in noisy 3D images. Biophysical Journal, 2021, 120, 3860-3868.	0.5	4
17	Flow radiocytometry using droplet optofluidics. Biosensors and Bioelectronics, 2021, 194, 113565.	10.1	3

#	Article	IF	CITATIONS
19	Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma. Innate Immunity, 2020, 26, 130-137.	2.4	29
20	Targetâ€Mediated Drug Disposition Pharmacokinetic/Pharmacodynamic Modelâ€Informed Dose Selection for the Firstâ€inâ€Human Study of AVB‣6â€500. Clinical and Translational Science, 2020, 13, 204-211.	3.1	17
21	An activatable NIR fluorescent rosol for selectively imaging nitroreductase activity. Sensors and Actuators B: Chemical, 2020, 306, 127446.	7.8	28
22	Intracellular C4BPA Levels Regulate NF-κB-Dependent Apoptosis. IScience, 2020, 23, 101594.	4.1	10
23	Lysosomal trafficking mediated by Arl8b and BORC promotes invasion of cancer cells that survive radiation. Communications Biology, 2020, 3, 620.	4.4	21
24	Rab27b contributes to radioresistance and exerts a paracrine effect via epiregulin in glioblastoma. Neuro-Oncology Advances, 2020, 2, vdaa091.	0.7	8
25	Evaluation of Salmon, Tuna, and Beef Freshness Using a Portable Spectrometer. Sensors, 2020, 20, 4299.	3.8	22
26	The m ⁶ A RNA demethylase FTO is a HIF-independent synthetic lethal partner with the VHL tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21441-21449.	7.1	56
27	Acetate supplementation restores chromatin accessibility and promotes tumor cell differentiation under hypoxia. Cell Death and Disease, 2020, 11, 102.	6.3	39
28	Induced Tumor Heterogeneity Reveals Factors Informing Radiation and Immunotherapy Combinations. Clinical Cancer Research, 2020, 26, 2972-2985.	7.0	9
29	Validated limited gene predictor for cervical cancer lymph node metastases. Oncotarget, 2020, 11, 2302-2309.	1.8	2
30	The tumour microenvironment links complement system dysregulation and hypoxic signalling. British Journal of Radiology, 2019, 92, 20180069.	2.2	10
31	Lambda-Carrageenan Enhances the Effects of Radiation Therapy in Cancer Treatment by Suppressing Cancer Cell Invasion and Metastasis through Racgap1 Inhibition. Cancers, 2019, 11, 1192.	3.7	9
32	HILPDA Regulates Lipid Metabolism, Lipid Droplet Abundance, and Response to Microenvironmental Stress in Solid Tumors. Molecular Cancer Research, 2019, 17, 2089-2101.	3.4	51
33	S100A10 Is a Critical Mediator of GAS6/AXL–Induced Angiogenesis in Renal Cell Carcinoma. Cancer Research, 2019, 79, 5758-5768.	0.9	39
34	Suppressing Mitochondrial Respiration Is Critical for Hypoxia Tolerance in the Fetal Growth Plate. Developmental Cell, 2019, 49, 748-763.e7.	7.0	41
35	Hypoxia-inducible factor 2α is a negative regulator of osteoblastogenesis and bone mass accrual. Bone Research, 2019, 7, 7.	11.4	39
36	Endothelial Hypoxia-Inducible Factor-2α Is Required for the Maintenance of Airway Microvasculature. Circulation, 2019, 139, 502-517.	1.6	35

#	Article	IF	CITATIONS
37	Galectin-1–driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance. Journal of Clinical Investigation, 2019, 129, 5553-5567.	8.2	94
38	Modulating the tumor microenvironment to enhance efficacy of PARP inhibitors Journal of Clinical Oncology, 2019, 37, e14715-e14715.	1.6	1
39	A Human Genome-Wide RNAi Screen Reveals Diverse Modulators that Mediate IRE1α–XBP1 Activation. Molecular Cancer Research, 2018, 16, 745-753.	3.4	8
40	Generation of Stable Expression Mammalian Cell Lines Using Lentivirus. Bio-protocol, 2018, 8, .	0.4	32
41	Mutations in an Innate Immunity Pathway Are Associated with Poor Overall Survival Outcomes and Hypoxic Signaling in Cancer. Cell Reports, 2018, 25, 3721-3732.e6.	6.4	22
42	Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity. Nature Communications, 2018, 9, 4590.	12.8	76
43	Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10756-10761.	7.1	121
44	Macrophages Promote Circulating Tumor Cell–Mediated Local Recurrence following Radiotherapy in Immunosuppressed Patients. Cancer Research, 2018, 78, 4241-4252.	0.9	36
45	KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage. Nucleic Acids Research, 2017, 45, gkw1281.	14.5	27
46	Hypoxia and Metastasis. , 2017, , 69-100.		0
47	Hypoxia and Bone Metastatic Disease. Current Osteoporosis Reports, 2017, 15, 231-238.	3.6	56
48	Molecular Pathways: Oncologic Pathways and Their Role in T-cell Exclusion and Immune Evasion—A New Role for the AXL Receptor Tyrosine Kinase. Clinical Cancer Research, 2017, 23, 2928-2933.	7.0	59
49	Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 2017, 17, 302-317.	28.4	1,272
50	BLIMP1 Induces Transient Metastatic Heterogeneity in Pancreatic Cancer. Cancer Discovery, 2017, 7, 1184-1199.	9.4	53
51	Long-range hypoxia signaling in NAFLD. Nature Medicine, 2017, 23, 1251-1252.	30.7	2
52	Patterns of Vasculature in Mouse Models of Lung Cancer Are Dependent on Location. Molecular Imaging and Biology, 2017, 19, 215-224.	2.6	15
53	Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. International Journal of Nanomedicine, 2017, Volume 12, 5069-5085.	6.7	91
54	Metabolic Alterations in Cancer and Their Potential as Therapeutic Targets. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 825-832.	3.8	25

#	Article	IF	CITATIONS
55	Metabolic Alterations in Cancer and Their Potential as Therapeutic Targets. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 825-832.	3.8	28
56	The Receptor Tyrosine Kinase AXL in Cancer Progression. Cancers, 2016, 8, 103.	3.7	120
57	Isolation of Proteins on Nascent DNA in Hypoxia and Reoxygenation Conditions. Advances in Experimental Medicine and Biology, 2016, 899, 27-40.	1.6	2
58	Mechanisms and consequences of ATMIN repression in hypoxic conditions: roles for p53 and HIF-1. Scientific Reports, 2016, 6, 21698.	3.3	18
59	Reprogramming the immunological microenvironment through radiation and targeting Axl. Nature Communications, 2016, 7, 13898.	12.8	150
60	The ever-expanding role of HIF in tumour and stromal biology. Nature Cell Biology, 2016, 18, 356-365.	10.3	337
61	Hypoxic control of metastasis. Science, 2016, 352, 175-180.	12.6	953
62	A New Chromatin–Cytoskeleton Link in Cancer. Molecular Cancer Research, 2016, 14, 1173-1175.	3.4	3
63	Identification of Doxorubicin as an Inhibitor of the IRE1α-XBP1 Axis of the Unfolded Protein Response. Scientific Reports, 2016, 6, 33353.	3.3	27
64	Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nature Cell Biology, 2016, 18, 1078-1089.	10.3	203
65	Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy. Proceedings of the United States of America, 2016, 113, 13120-13125.	7.1	60
66	Acridine Derivatives as Inhibitors of the IRE1α–XBP1 Pathway Are Cytotoxic to Human Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 2055-2065.	4.1	24
67	Hypoxia: Signaling the Metastatic Cascade. Trends in Cancer, 2016, 2, 295-304.	7.4	155
68	Measuring the Impact of Microenvironmental Conditions on Mitochondrial Dehydrogenase Activity in Cultured Cells. Advances in Experimental Medicine and Biology, 2016, 899, 113-120.	1.6	2
69	The Role of Hypoxia in Radiation Response. , 2016, , 29-42.		1
70	Reducing radiation-induced gastrointestinal toxicity — the role of the PHD/HIF axis. Journal of Clinical Investigation, 2016, 126, 3708-3715.	8.2	44
71	Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. Journal of Clinical Investigation, 2016, 127, 183-198.	8.2	86
72	Emerging Treatment Paradigms in Radiation Oncology. Clinical Cancer Research, 2015, 21, 3393-3401.	7.0	33

Αματό J Giaccia

#	Article	IF	CITATIONS
73	Analysis of p53 Transactivation Domain Mutants Reveals Acad11 as a Metabolic Target Important for p53 Pro-Survival Function. Cell Reports, 2015, 10, 1096-1109.	6.4	53
74	Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma. Cell Reports, 2015, 12, 116-127.	6.4	140
75	HIF targets in bone remodeling and metastatic disease. , 2015, 150, 169-177.		52
76	Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2015, 92, 568-576.	0.8	75
77	Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes and Development, 2015, 29, 817-831.	5.9	78
78	Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to enhance migration and metastasis of melanoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4441-4446.	7.1	43
79	The End of the Hypoxic EPOch. International Journal of Radiation Oncology Biology Physics, 2015, 91, 895-897.	0.8	3
80	Fibrosis and Hypoxia-Inducible Factor-1α–Dependent Tumors of the Soft Tissue on Loss of Von Hippel-Lindau in Mesenchymal Progenitors. American Journal of Pathology, 2015, 185, 3090-3101.	3.8	9
81	Dual roles of NRF2 in tumor prevention and progression: Possible implications in cancer treatment. Free Radical Biology and Medicine, 2015, 79, 292-299.	2.9	138
82	Loss of HIF-1Î \pm in the Notochord Results in Cell Death and Complete Disappearance of the Nucleus Pulposus. PLoS ONE, 2014, 9, e110768.	2.5	83
83	Osteoblasts: a Novel Source of Erythropoietin. Current Osteoporosis Reports, 2014, 12, 428-432.	3.6	24
84	Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13373-13378.	7.1	232
85	PHD Inhibition Mitigates and Protects Against Radiation-Induced Gastrointestinal Toxicity via HIF2. Science Translational Medicine, 2014, 6, 236ra64.	12.4	120
86	Identifying novel targets in renal cell carcinoma: Design and synthesis of affinity chromatography reagents. Bioorganic and Medicinal Chemistry, 2014, 22, 711-720.	3.0	6
87	The Apoptosis Repressor with a CARD Domain (ARC) Gene Is a Direct Hypoxia-Inducible Factor 1 Target Gene and Promotes Survival and Proliferation of VHL-Deficient Renal Cancer Cells. Molecular and Cellular Biology, 2014, 34, 739-751.	2.3	32
88	Tumor Microenvironment and Cellular Stress. Advances in Experimental Medicine and Biology, 2014, 772, v-viii.	1.6	29
89	Recruitment of Circulating Breast Cancer Cells Is Stimulated by Radiotherapy. Cell Reports, 2014, 8, 402-409.	6.4	65
90	Loss of VHL in mesenchymal progenitors of the limb bud alters multiple steps of endochondral bone development. Developmental Biology, 2014, 393, 124-136.	2.0	29

#	Article	IF	CITATIONS
91	An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis. Nature Chemical Biology, 2014, 10, 977-983.	8.0	117
92	Galectin-1 Mediates Radiation-Related Lymphopenia and Attenuates NSCLC Radiation Response. Clinical Cancer Research, 2014, 20, 5558-5569.	7.0	64
93	Molecular Radiobiology: The State of the Art. Journal of Clinical Oncology, 2014, 32, 2871-2878.	1.6	33
94	Small Molecules Targeting the VHL/Hypoxic Phenotype. Cancer Drug Discovery and Development, 2014, , 253-264.	0.4	1
95	Epidermal or Dermal Specific Knockout of PHD-2 Enhances Wound Healing and Minimizes Ischemic Injury. PLoS ONE, 2014, 9, e93373.	2.5	24
96	A liver Hif-2α–Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nature Medicine, 2013, 19, 1331-1337.	30.7	90
97	A low-carb diet kills tumor cells with a mutant p53 tumor suppressor gene. Cell Cycle, 2013, 12, 718-719.	2.6	2
98	HIFâ€2: The Missing Link Between Obesity and Cardiomyopathy. Journal of the American Heart Association, 2013, 2, e000710.	3.7	4
99	Prognostic and Predictive Significance of Plasma HGF and IL-8 in a Phase III Trial of Chemoradiation with or without Tirapazamine in Locoregionally Advanced Head and Neck Cancer. Clinical Cancer Research, 2012, 18, 1798-1807.	7.0	56
100	Blood and bones: Osteoblastic HIF signaling regulates erythropoiesis. Cell Cycle, 2012, 11, 2221-2222.	2.6	4
101	The HIF Signaling Pathway in Osteoblasts Directly Modulates Erythropoiesis through the Production of EPO. Cell, 2012, 149, 63-74.	28.9	244
102	VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. Journal of Bone and Mineral Research, 2012, 27, 596-609.	2.8	94
103	State of the Science: An Update on Renal Cell Carcinoma. Molecular Cancer Research, 2012, 10, 859-880.	3.4	142
104	Targeting GLUT1 and the Warburg Effect in Renal Cell Carcinoma by Chemical Synthetic Lethality. Science Translational Medicine, 2011, 3, 94ra70.	12.4	431
105	Lack of HIF-2α in limb bud mesenchyme causes a modest and transient delay of endochondral bone development. Nature Medicine, 2011, 17, 25-26.	30.7	53
106	Harnessing synthetic lethal interactions in anticancer drug discovery. Nature Reviews Drug Discovery, 2011, 10, 351-364.	46.4	236
107	A Central Role for Hypoxic Signaling in Cartilage, Bone, and Hematopoiesis. Current Osteoporosis Reports, 2011, 9, 46-52.	3.6	76
108	Hypoxia and Senescence: The Impact of Oxygenation on Tumor Suppression. Molecular Cancer Research, 2011, 9, 538-544.	3.4	89

#	Article	IF	CITATIONS
109	<i>VHL</i> loss in renal cell carcinoma leads to up-regulation of CUB domain-containing protein 1 to stimulate PKCδ-driven migration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1931-1936.	7.1	80
110	Hypoxia and Modulation of Cellular Radiation Response. , 2011, , 127-141.		2
111	4-Pyridylanilinothiazoles That Selectively Target von Hippelâ^'Lindau Deficient Renal Cell Carcinoma Cells by Inducing Autophagic Cell Death. Journal of Medicinal Chemistry, 2010, 53, 787-797.	6.4	55
112	Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer and Metastasis Reviews, 2010, 29, 285-293.	5.9	321
113	AXL Is an Essential Factor and Therapeutic Target for Metastatic Ovarian Cancer. Cancer Research, 2010, 70, 7570-7579.	0.9	194
114	MiR-210 – micromanager of the hypoxia pathway. Trends in Molecular Medicine, 2010, 16, 230-237.	6.7	343
115	Role of Carcinoma-Associated Fibroblasts and Hypoxia in Tumor Progression. Current Topics in Microbiology and Immunology, 2010, 345, 31-45.	1.1	27
116	Regulation of the Histone Demethylase JMJD1A by Hypoxia-Inducible Factor 1α Enhances Hypoxic Gene Expression and Tumor Growth. Molecular and Cellular Biology, 2010, 30, 344-353.	2.3	312
117	Hypoxia, Gene Expression, and Metastasis. , 2010, , 43-58.		8
118	Hypoxia Mediated Signaling Pathways. , 2010, , 2241-2245.		0
119	Dna Damage and Repair. , 2010, , 31-39.		0
120	Validation of Lysyl Oxidase As a Prognostic Marker for Metastasis and Survival in Head and Neck Squamous Cell Carcinoma: Radiation Therapy Oncology Group Trial 90-03. Journal of Clinical Oncology, 2009, 27, 4281-4286.	1.6	72
121	ATM Activation and Signaling under Hypoxic Conditions. Molecular and Cellular Biology, 2009, 29, 526-537.	2.3	210
122	The Role of Tumor Cell–Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth. Cancer Research, 2009, 69, 775-784.	0.9	129
123	Hypoxia-Induced Lysyl Oxidase Is a Critical Mediator of Bone Marrow Cell Recruitment to Form the Premetastatic Niche. Cancer Cell, 2009, 15, 35-44.	16.8	1,056
124	Hypoxia-Inducible mir-210 Regulates Normoxic Gene Expression Involved in Tumor Initiation. Molecular Cell, 2009, 35, 856-867.	9.7	549
125	Hypoxia, Angiogenesis, and Oral Cancer Metastasis. , 2009, , 299-321.		1
126	A Molecule Targeting VHL-Deficient Renal Cell Carcinoma that Induces Autophagy. Cancer Cell, 2008, 14, 90-102.	16.8	233

Αματό Ι **Giaccia**

#	Article	IF	CITATIONS
127	Short Hairpin RNA Interference Therapy for Ischemic Heart Disease. Circulation, 2008, 118, S226-33.	1.6	89
128	Genetic Determinants That Influence Hypoxia-Induced Apoptosis. Novartis Foundation Symposium, 2008, 240, 115-132.	1.1	19
129	Targeting the Loss of the von Hippel-Lindau Tumor Suppressor Gene in Renal Cell Carcinoma Cells. Cancer Research, 2007, 67, 5896-5905.	0.9	36
130	Multiple Factors Affecting Cellular Redox Status and Energy Metabolism Modulate Hypoxia-Inducible Factor Prolyl Hydroxylase Activity In Vivo and In Vitro. Molecular and Cellular Biology, 2007, 27, 912-925.	2.3	295
131	Hif-1α regulates differentiation of limb bud mesenchyme and joint development. Journal of Cell Biology, 2007, 177, 451-464.	5.2	181
132	HIF Gene Expression in Cancer Therapy. Methods in Enzymology, 2007, 435, 323-345.	1.0	24
133	Oxygen sensing and the DNA-damage response. Current Opinion in Cell Biology, 2007, 19, 680-684.	5.4	46
134	Hypoxia, gene expression, and metastasis. Cancer and Metastasis Reviews, 2007, 26, 333-339.	5.9	274
135	Lysyl Oxidase Mediates Hypoxic Control of Metastasis: Figure 1 Cancer Research, 2006, 66, 10238-10241.	0.9	188
136	DNA Damage during Reoxygenation Elicits a Chk2-Dependent Checkpoint Response. Molecular and Cellular Biology, 2006, 26, 1598-1609.	2.3	61
137	The roles of Chk 1 and Chk 2 in hypoxia and reoxygenation. Cancer Letters, 2006, 238, 161-167.	7.2	23
138	Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers. PLoS Medicine, 2006, 3, e47.	8.4	536
139	Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 2006, 440, 1222-1226.	27.8	1,231
140	Checking in on Hypoxia/Reoxygenation. Cell Cycle, 2006, 5, 1304-1307.	2.6	26
141	Connective Tissue Growth Factor–Specific Monoclonal Antibody Therapy Inhibits Pancreatic Tumor Growth and Metastasis. Cancer Research, 2006, 66, 5816-5827.	0.9	134
142	HIF11 [±] delays premature senescence through the activation of MIF. Genes and Development, 2006, 20, 3366-3371.	5.9	145
143	Functional Analysis of p53 Binding under Differential Stresses. Molecular and Cellular Biology, 2006, 26, 7030-7045.	2.3	59
144	Adaptive Myogenesis under Hypoxia. Molecular and Cellular Biology, 2005, 25, 3040-3055.	2.3	128

#	Article	IF	CITATIONS
145	Coordinate Regulation of the Oxygen-Dependent Degradation Domains of Hypoxia-Inducible Factor 1α. Molecular and Cellular Biology, 2005, 25, 6415-6426.	2.3	220
146	Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene, 2005, 24, 6555-6563.	5.9	73
147	The role of p53 in hypoxia-induced apoptosis. Biochemical and Biophysical Research Communications, 2005, 331, 718-725.	2.1	177
148	Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development. Development (Cambridge), 2004, 131, 2497-2508.	2.5	119
149	Distinct aerobic and hypoxic mechanisms of HIF-Â regulation by CSN5. Genes and Development, 2004, 18, 739-744.	5.9	62
150	Inhibition of ATR Leads to Increased Sensitivity to Hypoxia/Reoxygenation. Cancer Research, 2004, 64, 6556-6562.	0.9	98
151	Transient Changes in Oxygen Tension Inhibit Osteogenic Differentiation and Runx2 Expression in Osteoblasts. Journal of Biological Chemistry, 2004, 279, 40007-40016.	3.4	209
152	Radiation oncology: a century of achievements. Nature Reviews Cancer, 2004, 4, 737-747.	28.4	498
153	The hypoxic tumor microenvironment and gene expression. Seminars in Radiation Oncology, 2004, 14, 207-214.	2.2	100
154	Hypoxic gene expression and metastasis. Cancer and Metastasis Reviews, 2004, 23, 293-310.	5.9	287
155	The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. DNA Repair, 2004, 3, 1117-1122.	2.8	78
156	Dead cells don't form tumors: HIF-dependent cytotoxins. Cell Cycle, 2004, 3, 160-3.	2.6	10
157	Comparison of hypoxia-induced replication arrest with hydroxyurea and aphidicolin-induced arrest. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 532, 205-213.	1.0	76
158	Investigating hypoxic tumor physiology through gene expression patterns. Oncogene, 2003, 22, 5907-5914.	5.9	283
159	HIF-1 as a target for drug development. Nature Reviews Drug Discovery, 2003, 2, 803-811.	46.4	561
160	ATR/ATM Targets Are Phosphorylated by ATR in Response to Hypoxia and ATM in Response to Reoxygenation. Journal of Biological Chemistry, 2003, 278, 12207-12213.	3.4	250
161	Hypoxia-Induced Gene Expression Occurs Solely through the Action of Hypoxia-Inducible Factor 1α (HIF-1α): Role of Cytoplasmic Trapping of HIF-2α. Molecular and Cellular Biology, 2003, 23, 4959-4971.	2.3	164
162	Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clinical Cancer Research, 2003, 9, 59-67.	7.0	162

Амато Ј Сіассіа

#	Article	IF	CITATIONS
163	Regulation of Hypoxia-Inducible Factor \hat{l} Expression and Function by the Mammalian Target of Rapamycin. Molecular and Cellular Biology, 2002, 22, 7004-7014.	2.3	1,106
164	Role of Prolyl Hydroxylation in Oncogenically Stabilized Hypoxia-inducible Factor-1α. Journal of Biological Chemistry, 2002, 277, 40112-40117.	3.4	222
165	Hypoxia Links ATR and p53 through Replication Arrest. Molecular and Cellular Biology, 2002, 22, 1834-1843.	2.3	283
166	Inhibition of PPARÎ ³ 2 Gene Expression by the HIF-1-Regulated Gene DEC1/Stra13. Developmental Cell, 2002, 2, 331-341.	7.0	419
167	Epigenetic changes in tumor Fas levels determine immune escape and response to therapy. Cancer Cell, 2002, 2, 139-148.	16.8	96
168	Regulation of p53 by Hypoxia: Dissociation of Transcriptional Repression and Apoptosis from p53-Dependent Transactivation. Molecular and Cellular Biology, 2001, 21, 1297-1310.	2.3	326
169	p21 Cip1 and p27 Kip1 Regulate Cell Cycle Reentry after Hypoxic Stress but Are Not Necessary for Hypoxia-Induced Arrest. Molecular and Cellular Biology, 2001, 21, 1196-1206.	2.3	102
170	Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. Teratology, 1999, 60, 215-225.	1.6	107
171	p53 mediates apoptosis induced by c-Myc activation in hypoxic or gamma irradiated fibroblasts. Cell Death and Differentiation, 1998, 5, 141-147.	11.2	33
172	Cancer Therapy and Tumor Physiology. Science, 1998, 279, 10e-15.	12.6	7
173	Mechanism of heat shock Protein 72 induction in primary cultured astrocytes after oxygen-glucose deprivation. Neurological Research, 1996, 18, 64-72.	1.3	23
174	Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 1996, 379, 88-91.	27.8	2,223
175	Chemotherapeutic tumour targeting using clostridial spores. FEMS Microbiology Reviews, 1995, 17, 357-364.	8.6	2
176	Analysis of restriction enzyme-induced chromosomal aberrations by fluorescence in situ hybridization. Environmental and Molecular Mutagenesis, 1993, 22, 26-33.	2.2	18
177	Chromosomal radiosensitivity at intrachromosomal telomeric sites. Genes Chromosomes and Cancer, 1993, 8, 8-14.	2.8	75
178	Use of fluorescent in situ hybridization to detect chromosomal rearrangements in somatic cell hybrids. Genes Chromosomes and Cancer, 1990, 2, 248-251.	2.8	9