Jun Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3323463/publications.pdf

Version: 2024-02-01

		218677	149698
67	3,384 citations	26	56
papers	citations	h-index	g-index
68	68	68	3949
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Solventâ€Castâ€Assisted Printing of Biomimetic Morphing Hydrogel Structures with Solvent Evaporationâ€Induced Swelling Mismatch. Advanced Functional Materials, 2022, 32, 2108548.	14.9	17
2	An anisotropic immerse precipitation process for the preparation of polymer membranes. Soft Matter, 2022, , .	2.7	0
3	Promotion of Adrenal Pheochromocytoma (PC-12) Cell Proliferation and Outgrowth Using Schwann Cell-Laden Gelatin Methacrylate Substrate. Gels, 2022, 8, 84.	4.5	5
4	3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy. Journal of Materials Chemistry B, 2022, 10, 2126-2134.	5.8	7
5	3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. Journal of Materials Chemistry B, 2022, 10, 468-476.	5 . 8	22
6	3D printing topographic cues for cell contact guidance: a review. Materials and Design, 2022, , 110663.	7.0	9
7	Suspension printing of liquid metal in yield-stress fluid for resilient 3D constructs with electromagnetic functions. Npj Flexible Electronics, 2022, 6, .	10.7	22
8	A versatile embedding medium for freeform bioprinting with multi-crosslinking methods. Biofabrication, 2022, 14, 035022.	7.1	12
9	A hierarchical vascularized engineered bone inspired by intramembranous ossification for mandibular regeneration. International Journal of Oral Science, 2022, 14, .	8.6	9
10	Efficacy of Large Groove Texture on Rat Sciatic Nerve Regeneration In Vivo Using Polyacrylonitrile Nerve Conduits. Annals of Biomedical Engineering, 2021, 49, 394-406.	2.5	16
11	Additive-lathe 3D bioprinting of bilayered nerve conduits incorporated with supportive cells. Bioactive Materials, 2021, 6, 219-229.	15.6	45
12	Theoretical model of pediatric orbital trapdoor fractures and provisional personalized 3D printing-assisted surgical solution. Bioactive Materials, 2021, 6, 559-567.	15.6	7
13	Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Additive Manufacturing, 2021, 37, 101716.	3.0	36
14	Biofabrication of aligned structures that guide cell orientation and applications in tissue engineering. Bio-Design and Manufacturing, 2021, 4, 258-277.	7.7	32
15	A Mechanically Robust and Versatile Liquidâ€Free Ionic Conductive Elastomer. Advanced Materials, 2021, 33, e2006111.	21.0	188
16	3D Printed Multi-material Medical Phantoms for Needle-tissue Interaction Modelling of Heterogeneous Structures. Journal of Bionic Engineering, 2021, 18, 346-360.	5.0	14
17	Fabrication of a dual-layer cell-laden tubular scaffold for nerve regeneration and bile duct reconstruction. Biofabrication, 2021, 13, 035038.	7.1	12
18	Computational study of extrusion bioprinting with jammed gelatin microgel-based composite ink. Additive Manufacturing, 2021, 41, 101963.	3.0	19

#	Article	IF	Citations
19	Effect of bore fluid composition on poly(lactic-co-glycolic acid) hollow fiber membranes fabricated by dry-jet wet spinning. Journal of Membrane Science, 2021, 640, 119784.	8.2	7
20	Effect of Electrical and Electromechanical Stimulation on PC12 Cell Proliferation and Axon Outgrowth. Frontiers in Bioengineering and Biotechnology, 2021, 9, 757906.	4.1	10
21	A dual-layer cell-laden tubular scaffold for bile duct regeneration. Materials and Design, 2021, 212, 110229.	7.0	5
22	Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink. Additive Manufacturing, 2021, 48, 102451.	3.0	19
23	Glucosamineâ€grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 990-999.	3.4	19
24	Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Materials Horizons, 2020, 7, 3187-3195.	12.2	99
25	Physical understanding of axonal growth patterns on grooved substrates: groove ridge crossing versus longitudinal alignment. Bio-Design and Manufacturing, 2020, 3, 348-360.	7.7	17
26	Effect of Cyclic Stretch on Neuron Reorientation and Axon Outgrowth. Frontiers in Bioengineering and Biotechnology, 2020, 8, 597867.	4.1	16
27	Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57497-57504.	8.0	11
28	Integrated multifunctional flexible electronics based on tough supramolecular hydrogels with patterned silver nanowires. Journal of Materials Chemistry C, 2020, 8, 7688-7697.	5.5	32
29	Human nail bed extracellular matrix facilitates bone regeneration <i>via</i> macrophage polarization mediated by the JAK2/STAT3 pathway. Journal of Materials Chemistry B, 2020, 8, 4067-4079.	5.8	17
30	Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Materials Science and Engineering C, 2020, 109, 110625.	7.3	126
31	Constitutive behaviors of tough physical hydrogels with dynamic metal-coordinated bonds. Journal of the Mechanics and Physics of Solids, 2020, 139, 103935.	4.8	56
32	Soft Electroporation Through 3D Hollow Nanoelectrodes. Methods in Molecular Biology, 2020, 2050, 13-19.	0.9	1
33	High-fidelity and high-efficiency additive manufacturing using tunable pre-curing digital light processing. Additive Manufacturing, 2019, 30, 100889.	3.0	46
34	Controllable Bending of Bi-hydrogel Strips with Differential Swelling. Acta Mechanica Solida Sinica, 2019, 32, 652-662.	1.9	15
35	3D Printing of Multifunctional Hydrogels. Advanced Functional Materials, 2019, 29, 1900971.	14.9	225
36	3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Materials and Design, 2019, 171, 107708.	7.0	127

#	Article	IF	Citations
37	Trends on physical understanding of bioink printability. Bio-Design and Manufacturing, 2019, 2, 50-54.	7.7	22
38	Porous morphology and mechanical properties of poly(lactide-co-glycolide) hollow fiber membranes governed by ternary-phase inversion. Journal of Membrane Science, 2019, 579, 180-189.	8.2	16
39	Direct 3D printing of a tough hydrogel incorporated with carbon nanotubes for bone regeneration. Journal of Materials Chemistry B, 2019, 7, 7207-7217.	5.8	62
40	Utility of three-dimensional printing in preoperative planning for children with anomalous pulmonary venous connection: a single center experience. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1804-1814.	2.0	8
41	The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Bioscience Reports, 2019, 39, .	2.4	65
42	Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10461-10470.	8.0	79
43	Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Materials and Design, 2018, 150, 104-112.	7.0	194
44	3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. ACS Applied Materials & Interfaces, 2018, 10, 6849-6857.	8.0	417
45	Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning. ACS Applied Materials & Discrete Patterning.	8.0	82
46	Polyacrylonitrile Nerve Conduits With Inner Longitudinal Grooved Textures to Enhance Neuron Directional Outgrowth. Journal of Microelectromechanical Systems, 2018, 27, 457-463.	2.5	32
47	Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews, 2018, 5, .	11.3	129
48	Additive nanomanufacturing of lab-on-a-chip fluorescent peptide nanoparticle arrays for Alzheimer's disease diagnosis. Bio-Design and Manufacturing, 2018, 1, 182-194.	7.7	14
49	Programmed Deformations of 3Dâ€Printed Tough Physical Hydrogels with High Response Speed and Large Output Force. Advanced Functional Materials, 2018, 28, 1803366.	14.9	172
50	Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Materials Science and Engineering C, 2018, 92, 612-620.	7.3	120
51	The influence of cross-sectional morphology on the compressive resistance of polymeric nerve conduits. Polymer, 2018, 148, 93-100.	3.8	18
52	3D-Printed Ultratough Hydrogel Structures with Titin-like Domains. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11363-11367.	8.0	39
53	Fabrication of Inner Grooved Hollow Fiber Membranes Using Microstructured Spinneret for Nerve Regeneration. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	9
54	Laryngeal muscular control of vocal fold posturing: Numerical modeling and experimental validation. Journal of the Acoustical Society of America, 2016, 140, EL280-EL284.	1.1	10

#	Article	IF	Citations
55	Metal-Coordination Complexes Mediated Physical Hydrogels with High Toughness, Stick–Slip Tearing Behavior, and Good Processability. Macromolecules, 2016, 49, 9637-9646.	4.8	320
56	Biointerfaces Mediated by Molecular Bonds: Cohesive Behaviors. International Journal of Applied Mechanics, 2016, 08, 1650040.	2.2	4
57	Processing tough supramolecular hydrogels with tunable strength of polyion complex. Polymer, 2016, 95, 9-17.	3.8	43
58	3D Printing of Ultratough Polyion Complex Hydrogels. ACS Applied Materials & Amp; Interfaces, 2016, 8, 31304-31310.	8.0	105
59	The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies. Journal of the Acoustical Society of America, 2013, 133, 2972-2983.	1.1	34
60	The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies. Proceedings of Meetings on Acoustics, 2013 , , .	0.3	1
61	Numerical study of axonal outgrowth in grooved nerve conduits. Journal of Neural Engineering, 2012, 9, 056001.	3.5	6
62	Experimental investigation of aligned groove formation on the inner surface of polyacrylonitrile hollow fiber membrane. Journal of Membrane Science, 2012, 394-395, 57-68.	8.2	24
63	Groove Formation Modeling in Fabricating Hollow Fiber Membrane for Nerve Regeneration. Journal of Applied Mechanics, Transactions ASME, 2011, 78, .	2.2	7
64	Investigation of Inner Surface Groove Formation Under Radially Inward Pressure During Immersion Precipitation-Based Hollow Fiber Membrane Fabrication. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2011, 133, .	2,2	4
65	Study of Process-Induced Cell Membrane Stability in Cell Direct Writing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2011, 133, .	2.2	6
66	Role of Marangoni Instability in Fabrication of Axially and Internally Grooved Hollow Fiber Membranes. Langmuir, 2010, 26, 16991-16999.	3.5	14
67	Industry news: the additive manufacturing of nerve conduits for the treatment of peripheral nerve injury. Bio-Design and Manufacturing, 0 , 1 .	7.7	8