
Karlene A Cimprich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3323266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ATR activity controls stem cell quiescence via the cyclin F–SCF complex. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115638119.	7.1	4
2	Walking a tightrope: The complex balancing act of R-loops in genome stability. Molecular Cell, 2022, 82, 2267-2297.	9.7	83
3	Quantitative DNA–RNA Immunoprecipitation Sequencing with Spike-Ins. Methods in Molecular Biology, 2022, , 381-410.	0.9	2
4	Abstract IA-003: Oxygen dependent resistance to PARP inhibitors. , 2021, , .		0
5	Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination–deficient cancer models. Journal of Clinical Investigation, 2021, 131, .	8.2	20
6	Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA–DNA hybrid imaging. Journal of Cell Biology, 2021, 220, .	5.2	37
7	qDRIP: a method to quantitatively assess RNA–DNA hybrid formation genome-wide. Nucleic Acids Research, 2020, 48, e84-e84.	14.5	55
8	HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis. Molecular Cell, 2020, 78, 1237-1251.e7.	9.7	125
9	PPARÎ ³ Interaction with UBR5/ATMIN Promotes DNA Repair to Maintain Endothelial Homeostasis. Cell Reports, 2019, 26, 1333-1343.e7.	6.4	54
10	R-Loops as Cellular Regulators and Genomic Threats. Molecular Cell, 2019, 73, 398-411.	9.7	493
11	A new mitotic activity comes into focus. Science, 2018, 359, 30-31.	12.6	2
12	An intrinsic S/G ₂ checkpoint enforced by ATR. Science, 2018, 361, 806-810.	12.6	215
13	Stochastic Endogenous Replication Stress Causes ATR-Triggered Fluctuations in CDK2 Activity that Dynamically Adjust Global DNA Synthesis Rates. Cell Systems, 2018, 7, 17-27.e3.	6.2	41
14	Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell, 2017, 170, 774-786.e19.	28.9	461
15	The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nature Reviews Molecular Cell Biology, 2017, 18, 622-636.	37.0	589
16	Conflict Resolution in the Genome: How Transcription and Replication Make It Work. Cell, 2016, 167, 1455-1467.	28.9	206
17	Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature Methods, 2016, 13, 1036-1042.	19.0	378
18	Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. ELife, 2016, 5, .	6.0	216

KARLENE A CIMPRICH

#	Article	IF	CITATIONS
19	Breaking bad: R-loops and genome integrity. Trends in Cell Biology, 2015, 25, 514-522.	7.9	292
20	HLTF's Ancient HIRAN Domain Binds 3′ DNA Ends to Drive Replication Fork Reversal. Molecular Cell, 2015, 58, 1090-1100.	9.7	163
21	Transcription-Coupled Nucleotide Excision Repair Factors Promote R-Loop-Induced Genome Instability. Molecular Cell, 2014, 56, 777-785.	9.7	445
22	The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair, 2014, 19, 84-94.	2.8	206
23	Causes and consequences of replication stress. Nature Cell Biology, 2014, 16, 2-9.	10.3	1,545
24	DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis. Journal of Cell Biology, 2014, 206, 183-197.	5.2	28
25	NEK8 Links the ATR-Regulated Replication Stress Response and S Phase CDK Activity to Renal Ciliopathies. Molecular Cell, 2013, 51, 423-439.	9.7	121
26	A Role for the MRN Complex in ATR Activation via TOPBP1 Recruitment. Molecular Cell, 2013, 50, 116-122.	9.7	140
27	ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes and Development, 2013, 27, 1610-1623.	5.9	343
28	SHPRH and HLTF Act in a Damage-Specific Manner to Coordinate Different Forms of Postreplication Repair and Prevent Mutagenesis. Molecular Cell, 2011, 42, 237-249.	9.7	157
29	Continued primer synthesis at stalled replication forks contributes to checkpoint activation. Journal of Cell Biology, 2010, 189, 233-246.	5.2	92
30	HARPing on about the DNA damage response during replication. Genes and Development, 2009, 23, 2359-2365.	5.9	35
31	DNA damage tolerance: when it's OK to make mistakes. Nature Chemical Biology, 2009, 5, 82-90.	8.0	168
32	A Genome-wide siRNA Screen Reveals Diverse Cellular Processes and Pathways that Mediate Genome Stability. Molecular Cell, 2009, 35, 228-239.	9.7	482
33	ATR: an essential regulator of genome integrity. Nature Reviews Molecular Cell Biology, 2008, 9, 616-627.	37.0	1,497
34	Mechanisms for Maintaining Genome Stability at the Replication Fork. FASEB Journal, 2008, 22, 246.3.	0.5	0
35	Probing ATR Activation with Model DNA Templates. Cell Cycle, 2007, 6, 2348-2354.	2.6	12
36	The structural determinants of checkpoint activation. Genes and Development, 2007, 21, 898-903.	5.9	202

KARLENE A CIMPRICH

#	Article	IF	CITATIONS
37	Analyzing the ATR-mediated checkpoint using Xenopus egg extracts. Methods, 2007, 41, 222-231.	3.8	21
38	The ATR pathway: Fine-tuning the fork. DNA Repair, 2007, 6, 953-966.	2.8	228
39	Monoubiquitination of Proliferating Cell Nuclear Antigen Induced by Stalled Replication Requires Uncoupling of DNA Polymerase and Mini-chromosome Maintenance Helicase Activities*. Journal of Biological Chemistry, 2006, 281, 32081-32088.	3.4	86
40	Phosphorylation of Xenopus Rad1 and Hus1 Defines a Readout for ATR Activation That Is Independent of Claspin and the Rad9 Carboxy Terminus. Molecular Biology of the Cell, 2006, 17, 1559-1569.	2.1	33
41	Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes and Development, 2005, 19, 1040-1052.	5.9	635
42	Fragile Sites: Breaking up over a Slowdown. Current Biology, 2003, 13, R231-R233.	3.9	40
43	An ATR- and Cdc7-Dependent DNA Damage Checkpoint that Inhibits Initiation of DNA Replication. Molecular Cell, 2003, 11, 203-213.	9.7	331
44	A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes and Development, 2002, 16, 2327-2332.	5.9	146
45	Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint. Current Biology, 2000, 10, 1565-1573.	3.9	186
46	Activation of the ATM Kinase by Ionizing Radiation and Phosphorylation of p53. , 1998, 281, 1677-1679.		1,754