Fengjing Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3323189/publications.pdf

Version: 2024-02-01

45 papers

1,189 citations

20 h-index 377865 34 g-index

46 all docs

46 docs citations

46 times ranked

1464 citing authors

#	Article	IF	CITATIONS
1	Research on Iron-Lead Semi-Flow Battery Based on 3D Solid Electrode. Acta Chimica Sinica, 2022, 80, 56.	1.4	4
2	Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers. Journal of Power Sources, 2021, 482, 228903.	7.8	28
3	Construction of Three-dimensional Ion-conducting Channels of Poly(vinylidene fluoride) Membranes and Their Performance in Vanadium Redox Flow Battery. Acta Chimica Sinica, 2021, 79, 1123.	1.4	2
4	Robust Ionâ€Selective Membrane for Redox Flow Batteries Based on Ultralow Sulfonation Degree Poly(Ether Sulfone). Macromolecular Chemistry and Physics, 2021, 222, 2100015.	2.2	1
5	Finely controlled swelling: A shortcut to construct ion-selective channels in polymer membranes. Polymer, 2021, 225, 123793.	3.8	7
6	Dual-porous structured membrane for ion-selection in vanadium flow battery. Journal of Power Sources, 2021, 506, 230234.	7.8	10
7	Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries. Journal of Membrane Science, 2020, 595, 117614.	8.2	40
8	Towards cost-effective proton-exchange membranes for redox flow batteries: A facile and innovative method. Journal of Power Sources, 2020, 449, 227475.	7.8	20
9	Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries. Renewable Energy, 2020, 152, 1310-1316.	8.9	33
10	Notably enhanced proton conductivity by thermally-induced phase-separation transition of Nafion/Poly(vinylidene fluoride) blend membranes. Journal of Power Sources, 2020, 473, 228586.	7.8	36
11	Robust proton exchange membrane for vanadium redox flow batteries reinforced by silica-encapsulated nanocellulose. International Journal of Hydrogen Energy, 2020, 45, 9803-9810.	7.1	18
12	Low-Temperature Nitrogen-Doping of Graphite Felt Electrode for Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 2019, 166, A2336-A2340.	2.9	18
13	Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries. Journal of Power Sources, 2019, 440, 227114.	7.8	39
14	Photo-crosslinked nanofibrous membranes as advanced low-temperature regenerative desiccant. Polymer Testing, 2019, 78, 105947.	4.8	5
15	Lowâ€Carbonâ€Content Composite Bipolar Plates: A Novel Design and Its Performance in Vanadium Redox Flow Batteries. ChemistrySelect, 2019, 4, 2421-2427.	1.5	12
16	Proton exchange membranes with ultra-low vanadium ions permeability improved by sulfated zirconia for all vanadium redox flow battery. International Journal of Hydrogen Energy, 2019, 44, 5997-6006.	7.1	38
17	An in-depth analysis of the silicon solar cell key parameters' optimal magnitudes using PC1D simulations. Optik, 2018, 164, 105-113.	2.9	19
18	Polyamide 6-LiCl nanofibrous membrane as low-temperature regenerative desiccant with improved stability. Nanotechnology, 2018, 29, 185702.	2.6	8

#	Article	IF	CITATIONS
19	Nafion/IL Intermediate Temperature Proton Exchange Membranes Improved by Mesoporous Hollow Silica Spheres. Fuel Cells, 2018, 18, 389-396.	2.4	20
20	Mesoporous hollow silica spheres as micro-water-tanks in proton exchange membranes. Polymer Testing, 2017, 59, 423-429.	4.8	15
21	Kinetic modeling of novel solid desiccant based on PVA-LiCl electrospun nanofibrous membrane. Polymer Testing, 2017, 64, 183-193.	4.8	20
22	Sorption and regeneration performance of novel solid desiccant based on PVA-LiCl electrospun nanofibrous membrane. Polymer Testing, 2017, 64, 242-249.	4.8	20
23	Core–shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. Journal of Membrane Science, 2016, 510, 1-9.	8.2	86
24	Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. Journal of Power Sources, 2015, 279, 21-27.	7.8	140
25	Single-ion Polyelectrolyte/ Mesoporous Hollow-Silica Spheres, Composite Electrolyte Membranes for Lithium-ion Batteries. Electrochimica Acta, 2015, 182, 297-304.	5.2	20
26	In-situ growth of LiFePO4 nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets for high-performance lithium ion batteries. Electrochimica Acta, 2015, 153, 334-342.	5.2	26
27	Enzyme-Labeled Pt@BSA Nanocomposite as a Facile Electrochemical Biosensing Interface for Sensitive Glucose Determination. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4170-4178.	8.0	79
28	Soft-templated LiFePO ₄ /mesoporous carbon nanosheets (LFP/meso-CNSs) nanocomposite as the cathode material of lithium ion batteries. RSC Advances, 2014, 4, 21325-21331.	3.6	16
29	Nano-spheres stabilized poly(vinyl phosphonic acid) as proton conducting membranes for PEMFCs. International Journal of Hydrogen Energy, 2014, 39, 11157-11164.	7.1	17
30	Dense poly(4-vinyl pyridine) brushes grafting from silica nanoparticles via atom transfer radical polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 302-308.	4.7	9
31	Silica ultrafiltration membrane with tunable pore size for macromolecule separation. Journal of Membrane Science, 2013, 441, 25-30.	8.2	8
32	Anhydrous proton-conducting glass membranes doped with ionic liquid for intermediate-temperature fuel cells. Electrochimica Acta, 2012, 59, 86-90.	5.2	32
33	Flexible proton-conducting glass-based composite membranes for fuel cell application. Journal of Power Sources, 2012, 199, 61-67.	7.8	11
34	Fast proton-conducting glass membrane based on porous phosphosilicate and perfluorosulfonic acid polymer. Journal of Power Sources, 2011, 196, 1048-1054.	7.8	11
35	Ultra-thin, flexible organic/inorganic multilayer proton-conducting membrane. Solid State Ionics, 2011, 190, 25-29.	2.7	4
36	Ultrathin proton-conducting sandwich membrane with low methanol permeability based on perfluorosulfonic acid polymer and phosphosilicate. Journal of Power Sources, 2011, 196, 4583-4587.	7.8	4

#	Article	IF	CITATION
37	High proton-conducting monolithic phosphosilicate glass membranes. Microporous and Mesoporous Materials, 2011, 138, 63-67.	4.4	27
38	Ultraâ€thin, Freeâ€Standing Protonâ€Conducting Membrane with Organic/Inorganic Sandwich Structure. Macromolecular Chemistry and Physics, 2010, 211, 863-868.	2.2	3
39	Soft magnetic composite particles of reduced iron coated with poly(p-xylylene) via chemical vapor deposition polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 62-65.	4.7	26
40	Phase Behavior and Proton Conduction in Poly(vinylphosphonic acid)/Poly(ethylene oxide) Blends. Macromolecules, 2010, 43, 3876-3881.	4.8	12
41	Effect of Polymer Composition and Water Content on Proton Conductivity in Vinyl Benzyl Phosphonic Acid—4â€Vinyl Pyridine Copolymers. Macromolecular Chemistry and Physics, 2008, 209, 2494-2503.	2.2	33
42	A new anhydrous proton conductor based on polybenzimidazole and tridecyl phosphate. Electrochimica Acta, 2008, 53, 4495-4499.	5. 2	33
43	Proton-Conducting Polymers via Atom Transfer Radical Polymerization of Diisopropyl- <i>p</i> >/i>-Vinylbenzyl Phosphonate and 4-Vinylpyridine. Macromolecules, 2008, 41, 3081-3085.	4.8	32
44	Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films. Materials Letters, 2006, 60, 94-97.	2.6	50
45	Towards high sedimentation stability: magnetorheological fluids based on CNT/Fe3O4nanocomposites. Nanotechnology, 2005, 16, 1486-1489.	2.6	97