Stephan Segerer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3323119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemokines, Chemokine Receptors, and Renal Disease. Journal of the American Society of Nephrology: JASN, 2000, 11, 152-176.	6.1	435
2	The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nature Immunology, 2009, 10, 101-108.	14.5	301
3	Viral Double-Stranded RNA Aggravates Lupus Nephritis through Toll-Like Receptor 3 on Glomerular Mesangial Cells and Antigen-Presenting Cells. Journal of the American Society of Nephrology: JASN, 2005, 16, 1326-1338.	6.1	207
4	Expression of chemokines and chemokine receptors during human renal transplant rejection. American Journal of Kidney Diseases, 2001, 37, 518-531.	1.9	200
5	Inhibition of Toll-Like Receptor-7 (TLR-7) or TLR-7 plus TLR-9 Attenuates Glomerulonephritis and Lung Injury in Experimental Lupus. Journal of the American Society of Nephrology: JASN, 2007, 18, 1721-1731.	6.1	200
6	Cross-Species Transcriptional Network Analysis Defines Shared Inflammatory Responses in Murine and Human Lupus Nephritis. Journal of Immunology, 2012, 189, 988-1001.	0.8	196
7	Spiegelmer Inhibition of CCL2/MCP-1 Ameliorates Lupus Nephritis in MRL-(Fas)lpr Mice. Journal of the American Society of Nephrology: JASN, 2007, 18, 2350-2358.	6.1	167
8	Expression of the C-C chemokine receptor 5 in human kidney diseases. Kidney International, 1999, 56, 52-64.	5.2	146
9	CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney International, 2004, 66, 2264-2278.	5.2	129
10	Late Onset of Ccl2 Blockade with the Spiegelmer mNOX-E36–3′PEG Prevents Glomerulosclerosis and Improves Glomerular Filtration Rate in db/db Mice. American Journal of Pathology, 2008, 172, 628-637.	3.8	129
11	Chemokine Receptor CCR1 But Not CCR5 Mediates Leukocyte Recruitment and Subsequent Renal Fibrosis after Unilateral Ureteral Obstruction. Journal of the American Society of Nephrology: JASN, 2004, 15, 337-347.	6.1	124
12	Toll-Like Receptor-7 Modulates Immune Complex Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 141-149.	6.1	121
13	Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrology Dialysis Transplantation, 2006, 21, 3062-3073.	0.7	113
14	Loss of collagen-receptor DDR1 delays renal fibrosis in hereditary type IV collagen disease. Matrix Biology, 2010, 29, 346-356.	3.6	112
15	CXCR3 Is Involved in Tubulointerstitial Injury in Human Glomerulonephritis. American Journal of Pathology, 2004, 164, 635-649.	3.8	108
16	The Contribution of B Cells to Renal Interstitial Inflammation. American Journal of Pathology, 2007, 170, 457-468.	3.8	108
17	Late Onset of Treatment with a Chemokine Receptor CCR1 Antagonist Prevents Progression of Lupus Nephritis in MRL-Fas(lpr) Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 1504-1513.	6.1	105
18	Renal Injury in Apolipoprotein F–Deficient Mice. Laboratory Investigation, 2002, 82, 999-1006.	3.7	102

#	Article	IF	CITATIONS
19	Human Nephrosclerosis Triggers a Hypoxia-Related Glomerulopathy. American Journal of Pathology, 2010, 176, 594-607.	3.8	95
20	Expression of the Chemokine Monocyte Chemoattractant Protein-1 and Its Receptor Chemokine Receptor 2 in Human Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2000, 11, 2231-2242.	6.1	95
21	Delayed Chemokine Receptor 1 Blockade Prolongs Survival in Collagen 4A3–Deficient Mice with Alport Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 977-985.	6.1	94
22	Chemokine Receptor Ccr2 Deficiency Reduces Renal Disease and Prolongs Survival in MRL/lpr Lupus-Prone Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 3592-3601.	6.1	93
23	Toll-like receptor-4: Renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney International, 2005, 68, 2582-2587.	5.2	90
24	Ligands to Nucleic Acid–Specific Toll-Like Receptors and the Onset of Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 3365-3373.	6.1	90
25	Resident Dendritic Cells Prevent Postischemic Acute Renal Failure by Help of Single Ig IL-1 Receptor-Related Protein. Journal of Immunology, 2009, 183, 4109-4118.	0.8	90
26	Periostin Is Induced in Glomerular Injury and Expressed de Novo in Interstitial Renal Fibrosis. American Journal of Pathology, 2011, 179, 1756-1767.	3.8	90
27	The Role of Interstitial Macrophages in Nephropathy of Type 2 Diabetic db/db Mice. American Journal of Pathology, 2007, 170, 1267-1276.	3.8	87
28	Expression of the fractalkine receptor (CX3CR1) in human kidney diseases. Kidney International, 2002, 62, 488-495.	5.2	84
29	The Duffy antigen receptor for chemokines is up-regulated during acute renal transplant rejection and crescentic glomerulonephritis. Kidney International, 2000, 58, 1546-1556.	5.2	81
30	Inhibition of Aerobic Glycolysis Attenuates Disease Progression in Polycystic Kidney Disease. PLoS ONE, 2016, 11, e0146654.	2.5	81
31	Cryoglobulinemic Glomerulonephritis in Thymic Stromal Lymphopoietin Transgenic Mice. American Journal of Pathology, 2001, 159, 2355-2369.	3.8	78
32	B cells and tertiary lymphoid organs in renal inflammation. Kidney International, 2008, 73, 533-537.	5.2	75
33	Renal expression of FGF23 and peripheral resistance to elevated FGF23 in rodent models of polycystic kidney disease. Kidney International, 2014, 85, 1340-1350.	5.2	75
34	Chemokine and Chemokine Receptor Expression during Initiation and Resolution of Immune Complex Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2001, 12, 919-931.	6.1	73
35	Hyperlipidemia under treatment with proteinase inhibitors. Infection, 1999, 27, 77-81.	4.7	72
36	Renal tubular PD-L1 (CD274) suppresses alloreactive human T-cell responses. Kidney International, 2010, 78, 38-47.	5.2	72

#	Article	IF	CITATIONS
37	Chemokine Receptor CCR5 and CXCR4 Expression in HIV-Associated Kidney Disease. Journal of the American Society of Nephrology: JASN, 2000, 11, 856-867.	6.1	72
38	CCR10 is expressed in cutaneous T ell lymphoma. International Journal of Cancer, 2005, 115, 641-647.	5.1	66
39	Bacterial lipopeptide triggers massive albuminuria in murine lupus nephritis by activating Tollâ€like receptor 2 at the glomerular filtration barrier. Immunology, 2009, 128, e206-21.	4.4	63
40	Coactivation of Toll-like receptor-3 and -7 in immune complex glomerulonephritis. Journal of Autoimmunity, 2007, 29, 52-59.	6.5	62
41	Report of the Standardized Outcomes in Nephrology–Hemodialysis (SONG-HD) Consensus Workshop on Establishing a Core Outcome Measure forÂHemodialysis Vascular Access. American Journal of Kidney Diseases, 2018, 71, 690-700.	1.9	62
42	Intrarenal production of B-cell survival factors in human lupus nephritis. Modern Pathology, 2011, 24, 98-107.	5.5	61
43	Anti-Ccl2 Spiegelmer Permits 75% Dose Reduction of Cyclophosphamide to Control Diffuse Proliferative Lupus Nephritis and Pneumonitis in MRL-Fas(lpr) Mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 371-377.	2.5	60
44	Viral 5â€2â€triphosphate RNA and nonâ€CpG DNA aggravate autoimmunity and lupus nephritis <i>via</i> distinct TLRâ€independent immune responses. European Journal of Immunology, 2008, 38, 3487-3498.	2.9	55
45	Podoplanin-positive cells are a hallmark of encapsulating peritoneal sclerosis. Nephrology Dialysis Transplantation, 2011, 26, 1033-1041.	0.7	52
46	Hyperglycemia and Hyperlipidemia Act Synergistically to Induce Renal Disease in LDL Receptor-Deficient BALB Mice. American Journal of Nephrology, 2004, 24, 20-31.	3.1	49
47	Nephroprotective effect of the HMG-CoA-reductase inhibitor cerivastatin in a mouse model of progressive renal fibrosis in Alport syndrome. Nephrology Dialysis Transplantation, 2007, 22, 1062-1069.	0.7	46
48	Expression of glucose transporters in human peritoneal mesothelial cells. Kidney International, 1998, 53, 1278-1287.	5.2	45
49	Lymphotoxin β Receptor Signaling Promotes Development of Autoimmune Pancreatitis. Gastroenterology, 2012, 143, 1361-1374.	1.3	45
50	Hyponatremic encephalopathy after preparation for colonoscopy. Gastrointestinal Endoscopy, 2001, 53, 527-529.	1.0	43
51	Role of Chemokines for the Localization of Leukocyte Subsets in the Kidney. Seminars in Nephrology, 2007, 27, 260-274.	1.6	43
52	Presence of HSVâ€1 Immediate Early Genes and Clonally Expanded Tâ€cells with a Memory Effector Phenotype in Human Trigeminal Ganglia. Brain Pathology, 2007, 17, 389-398.	4.1	42
53	The role of lymphatics in renal inflammation. Nephrology Dialysis Transplantation, 2012, 27, 2634-2641.	0.7	42
54	Chemokines and chemokine receptors in renal pathology. Current Opinion in Nephrology and Hypertension, 2003, 12, 243-249.	2.0	41

#	Article	IF	CITATIONS
55	When renal allografts turn darc1. Transplantation, 2003, 75, 1030-1034.	1.0	41
56	Immune Cell–Derived C3 Is Required for Autoimmune Diabetes Induced by Multiple Low Doses of Streptozotocin. Diabetes, 2010, 59, 2247-2252.	0.6	41
57	Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrology Dialysis Transplantation, 2008, 24, 731-734.	0.7	40
58	Human Renal Cell Carcinoma Induces a Dendritic Cell Subset That Uses T-Cell Crosstalk for Tumor-Permissive Milieu Alterations. American Journal of Pathology, 2011, 179, 436-451.	3.8	39
59	Nephroprotection by antifibrotic and anti-inflammatory effects of the vasopeptidase inhibitor AVE7688. Kidney International, 2005, 68, 456-463.	5.2	38
60	Acute kidney injury and tools for risk-stratification in 456 patients with hantavirus-induced nephropathia epidemica. Nephrology Dialysis Transplantation, 2015, 30, 245-251.	0.7	38
61	Deletion of the FcÎ ³ Receptor IIb in Thymic Stromal Lymphopoietin Transgenic Mice Aggravates Membranoproliferative Glomerulonephritis. American Journal of Pathology, 2003, 163, 1127-1136.	3.8	37
62	Ccl2/Mcpâ€1 blockade reduces glomerular and interstitial macrophages but does not ameliorate renal pathology in <i>collagen4A3</i> â€deficient mice with autosomal recessive Alport nephropathy. Journal of Pathology, 2009, 218, 40-47.	4.5	35
63	Efficient Renal Recruitment of Macrophages and T Cells in Mice Lacking the Duffy Antigen/Receptor for Chemokines. American Journal of Pathology, 2009, 175, 119-131.	3.8	35
64	Clinical Course and Long-Term Outcome of Hantavirus-Associated Nephropathia Epidemica, Germany. Emerging Infectious Diseases, 2015, 21, 76-83.	4.3	35
65	The chemokine receptor CXCR7 is expressed on lymphatic endothelial cells during renal allograft rejection. Kidney International, 2010, 77, 801-808.	5.2	34
66	Osteopontin expression in human cyclosporine toxicity. Kidney International, 2001, 60, 635-640.	5.2	32
67	Expression of the chemokine receptor CXCR3 in human renal allografts—a prospective study. Nephrology Dialysis Transplantation, 2006, 21, 1373-1381.	0.7	32
68	Targeting of sodium–glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han:SPRD rats. Kidney International, 2013, 84, 962-968.	5.2	32
69	Admission kidney function is a strong predictor for the response to nutritional support in patients at nutritional risk. Clinical Nutrition, 2021, 40, 2762-2771.	5.0	32
70	Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats. PLoS ONE, 2015, 10, e0125603.	2.5	32
71	Growth factor expression in a murine model of cryoglobulinemia. Kidney International, 2003, 63, 576-590.	5.2	31
72	Histological Criteria for Encapsulating Peritoneal Sclerosis – A Standardized Approach. PLoS ONE, 2012, 7, e48647.	2.5	31

#	Article	IF	CITATIONS
73	Localization of SPARC in developing, mature, and chronically injured human allograft kidneys. Kidney International, 2002, 62, 2073-2086.	5.2	30
74	Enhanced Expression of Duffy Antigen in the Lungs During Suppurative Pneumonia. Journal of Histochemistry and Cytochemistry, 2003, 51, 159-166.	2.5	30
75	Interstitial inflammation in Alport syndrome. Human Pathology, 2010, 41, 582-593.	2.0	30
76	Chemokines in Renal Diseases. Scientific World Journal, The, 2005, 5, 835-844.	2.1	29
77	Impact of chemokine receptor CX3CR1 in human renal allograft rejection. Transplant Immunology, 2010, 23, 204-208.	1.2	28
78	Expression of the chemokine receptor CCR6 in human renal inflammation. Nephrology Dialysis Transplantation, 2011, 26, 1211-1220.	0.7	27
79	Inhibition of Sodium-GlucoseCotransporter 2 with Dapagliflozin in Han: SPRD Rats with Polycystic Kidney Disease. Kidney and Blood Pressure Research, 2015, 40, 638-647.	2.0	26
80	Development of autoimmune pancreatitis is independent of CDKN1A/p21-mediated pancreatic inflammation. Gut, 2018, 67, 1663-1673.	12.1	26
81	Finding the Right Position: A Three-Year, Single-Center Experience with the "Self-Locating―Catheter. Peritoneal Dialysis International, 2010, 30, 519-523.	2.3	24
82	Overexpression of complement inhibitor Crry does not prevent cryoglobulin-associated membranoproliferative glomerulonephritis. Kidney International, 2004, 65, 1214-1223.	5.2	21
83	Diagnostic impact of percutaneous renal biopsy. Clinical Nephrology, 2015, 84 (2015), 311-322.	0.7	21
84	Dendritic Cells in Human Renal Inflammation – Part II. Nephron Experimental Nephrology, 2011, 119, e91-e98.	2.2	20
85	Role of CXCR3 in cellular but not humoral renal allograft rejection. Transplant International, 2005, 18, 676-680.	1.6	19
86	Expression of the chemokine receptor CCR1 in human renal allografts. Nephrology Dialysis Transplantation, 2007, 22, 1720-1729.	0.7	19
87	Selective Binding and Presentation of CCL5 by Discrete Tissue Microenvironments during Renal Inflammation. Journal of the American Society of Nephrology: JASN, 2007, 18, 1835-1844.	6.1	19
88	A complex pattern of chemokine receptor expression is seen in osteosarcoma. BMC Cancer, 2008, 8, 23.	2.6	19
89	The Spectrum of Podoplanin Expression in Encapsulating Peritoneal Sclerosis. PLoS ONE, 2012, 7, e53382.	2.5	19
90	Cellular Injury Associated with Renal Thrombotic Microangiopathy in Human Immunodeficiency Virus–Infected Macaques. Journal of the American Society of Nephrology: JASN, 2002, 13, 370-378.	6.1	19

#	Article	IF	CITATIONS
91	The role of chemokines and chemokine receptors in progressive renal diseases. American Journal of Kidney Diseases, 2003, 41, S15-S18.	1.9	18
92	Histological and Clinical Findings in Patients with Post-Transplantation and Classical Encapsulating Peritoneal Sclerosis: A European Multicenter Study. PLoS ONE, 2014, 9, e106511.	2.5	18
93	Gender-Specific Differences in Peritoneal Dialysis. Kidney and Blood Pressure Research, 2017, 42, 276-283.	2.0	18
94	Phenotypes of Encapsulating Peritoneal Sclerosis—Macroscopic Appearance, Histologic Findings, and Outcome. Peritoneal Dialysis International, 2013, 33, 495-502.	2.3	17
95	The Rho-GTPase binding protein IQGAP2 is required for the glomerular filtration barrier. Kidney International, 2015, 88, 1047-1056.	5.2	17
96	Soluble CD146 and B-type natriuretic peptide dissect overhydration into functional components of prognostic relevance in haemodialysis patients. Nephrology Dialysis Transplantation, 2018, 33, 2035-2042.	0.7	17
97	Transcriptional Patterns in Peritoneal Tissue of Encapsulating Peritoneal Sclerosis, a Complication of Chronic Peritoneal Dialysis. PLoS ONE, 2013, 8, e56389.	2.5	17
98	Oral interferon-α treatment of mice with cryoglobulinemic glomerulonephritis. American Journal of Kidney Diseases, 2002, 39, 876-888.	1.9	16
99	The basic residue cluster 55KKWVR59 in CCL5 is required for in vivo biologic function. Molecular Immunology, 2009, 46, 2533-2538.	2.2	16
100	The lymphotoxin \hat{l}^2 receptor is a potential therapeutic target in renal inflammation. Kidney International, 2016, 89, 113-126.	5.2	16
101	Developmental expression and functional significance of Kir channel subunits in ureteric bud and nephron epithelia. Pflugers Archiv European Journal of Physiology, 2002, 445, 321-330.	2.8	15
102	Dendritic Cells in Experimental Renal Inflammation – Part I. Nephron Experimental Nephrology, 2011, 119, e83-e90.	2.2	15
103	Expression of cyclooxygenase-1 and cyclooxygenase-2 in human renal allograft rejection - a prospective study. Transplant International, 2006, 19, 203-212.	1.6	14
104	Periostin: A Matricellular Protein Involved in Peritoneal Injury during Peritoneal Dialysis. Peritoneal Dialysis International, 2013, 33, 515-528.	2.3	14
105	Activation of nuclear factor of activated T cells 5 in the peritoneal membrane of uremic patients. American Journal of Physiology - Renal Physiology, 2015, 308, F1247-F1258.	2.7	14
106	Human proximal tubule cells form functional microtissues. Pflugers Archiv European Journal of Physiology, 2016, 468, 739-750.	2.8	14
107	Smoking Is a Risk Factor for Severe Acute Kidney Injury in Hantavirus-Induced Nephropathia Epidemica. Nephron, 2016, 134, 89-94.	1.8	13
108	The Role of T Cell Costimulation via DNAM-1 in Kidney Transplantation. PLoS ONE, 2016, 11, e0147951.	2.5	13

#	Article	IF	CITATIONS
109	The BH3-mimetic ABT-737 inhibits allogeneic immune responses. Transplant International, 2011, 24, 722-732.	1.6	12
110	Kidney Transplantation in Mice Using Left and Right Kidney Grafts. Journal of Surgical Research, 2010, 163, e91-e97.	1.6	10
111	Synergistic Bcl-2 inhibition by ABT-737 and cyclosporine A. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 315-323.	4.9	10
112	Puumala Hantavirus-Induced Hemorrhagic Fever with Renal Syndrome Must Be Considered across the Borders of Nephrology to Avoid Unnecessary Diagnostic Procedures. PLoS ONE, 2015, 10, e0144622.	2.5	10
113	Determination of Procalcitonin Levels in Patients with Nephropathia Epidemica - A Useful Tool or an Unnecessary Diagnostic Procedure?. Kidney and Blood Pressure Research, 2015, 40, 22-30.	2.0	9
114	Estimated glomerular filtration rate predicts 30-day mortality in medical emergency departments: Results of a prospective multi-national observational study. PLoS ONE, 2020, 15, e0230998.	2.5	9
115	High accuracy of proximity extension assay technology for the quantification of plasma brain natriuretic peptide. Journal of Clinical Laboratory Analysis, 2018, 32, e22574.	2.1	8
116	Platelet-Derived Growth Factor Receptor-Î ² Expression in Human Peritoneum. Nephron Clinical Practice, 2014, 128, 178-184.	2.3	7
117	Evaluation of lipase levels in patients with nephropathia epidemica - no evidence for acute pancreatitis. BMC Infectious Diseases, 2015, 15, 286.	2.9	7
118	Alteration of membrane complement regulators is associated with transporter status in patients on peritoneal dialysis. PLoS ONE, 2017, 12, e0177487.	2.5	7
119	Dialysis after graft loss: a Swiss experience. Nephrology Dialysis Transplantation, 2020, 35, 2182-2190.	0.7	7
120	Vertebral and internal mammary artery steal syndrome in patients with hemodialysis access. Vasa - European Journal of Vascular Medicine, 2016, 45, 163-168.	1.4	7
121	Vascular accesses for hemodialysis - an update. Vasa - European Journal of Vascular Medicine, 2013, 42, 252-263.	1.4	6
122	Absence of donor CD40 protects renal allograft epithelium and preserves renal function. Transplant International, 2013, 26, 535-544.	1.6	6
123	Clostridium Ramosum—A Rare Cause of Peritoneal Dialysis-Related Peritonitis. Peritoneal Dialysis International, 2018, 38, 231-232.	2.3	6
124	Lymphotoxin expression in human and murine renal allografts. PLoS ONE, 2018, 13, e0189396.	2.5	6
125	Body Surface Area, Creatinine Excretion Rate, and Total Body Water: Reference Data for Adults in the United States. Kidney Medicine, 2021, 3, 312-313.	2.0	6
126	Mononuclear Infiltrates in Osteosarcoma and Chemokine Receptor Expression: Fig. 1 Clinical Cancer Research, 2006, 12, 5253-5254.	7.0	5

#	Article	IF	CITATIONS
127	Atypical Chemokine Receptors in Renal Inflammation. Nephron Experimental Nephrology, 2010, 115, e89-e95.	2.2	5
128	Electrocardiographic abnormalities and relative bradycardia in patients with hantavirus-induced nephropathia epidemica. European Journal of Internal Medicine, 2016, 33, 67-73.	2.2	5
129	Monitoring Urine Flow to Prevent Overcorrection of Hyponatremia: Derivation of a Safe Upper Limit Based on the Edelman Equation. American Journal of Kidney Diseases, 2019, 73, 143-145.	1.9	5
130	Vascular endothelial growth factor D is a biomarker of fluid overload in haemodialysis patients. Nephrology Dialysis Transplantation, 2021, 36, 529-536.	0.7	5
131	The Potential Role of NFAT5 and Osmolarity in Peritoneal Injury. BioMed Research International, 2015, 2015, 1-6.	1.9	4
132	Acute effects of haemodialysis on central venous and arterial pressure characteristics. Nephrology, 2015, 20, 91-95.	1.6	4
133	Polyuria in Hantavirus Infection Reflects Disease Severity and Is Associated with Prolonged Hospital Stay: A Systematic Analysis of 335 Patients from Southern Germany. Nephron Experimental Nephrology, 2015, 128, 111-115.	2.2	4
134	Renal allograft DARCness in subclinical acute and chronic active ABMR. Transplant International, 2021, 34, 1494-1505.	1.6	3
135	Amelioration of Murine Autoimmune Pancreatitis by Targeted LTβR Inhibition and Anti-CD20 Treatment. ImmunoHorizons, 2020, 4, 688-700.	1.8	3
136	Estimating glomerular filtration rate: a systematic comparison of the new European Kidney Function Consortium equation with the Chronic Kidney Disease Epidemiology Collaboration equation. CKJ: Clinical Kidney Journal, 2021, 14, 448-450.	2.9	3
137	A Painful Fistula. Circulation, 2011, 123, 2606-2606.	1.6	2
138	C-reactive protein levels in combination with abdominal CT scans is a useful tool to predict the macroscopic appearance in late-stage EPS patients prior to surgery. International Journal of Nephrology and Renovascular Disease, 2015, 8, 83.	1.8	2
139	The number of patients with severe encapsulating peritoneal sclerosis is decreasing in a large referral center in Germany. International Journal of Nephrology and Renovascular Disease, 2016, Volume 9, 183-186.	1.8	2
140	CD147 expression in peritoneal injury. Clinical and Experimental Nephrology, 2017, 21, 1097-1104.	1.6	2
141	Gadolinium Deposits Could Influence the Course of Encapsulating Peritoneal Sclerosis. Peritoneal Dialysis International, 2014, 34, 561-565.	2.3	1
142	SP695DIALYSIS AFTER GRAFT LOSS: THE SWISS EXPERIENCE. Nephrology Dialysis Transplantation, 2018, 33, i580-i581.	0.7	1
143	The non-steady state CKD-EPI calculator. CKJ: Clinical Kidney Journal, 2021, 14, 1853-1856.	2.9	1
144	A Simple Method to Remove Timing Bias From the Kidney Disease: Improving Global Outcomes Definition and Classification of Acute Kidney Injury. Kidney International Reports, 2021, 6, 1747-1748.	0.8	1

#	Article	IF	CITATIONS
145	Chemokines in Transplantation Biology. , 2007, , 139-154.		Ο
146	Blocking lymphotoxin signalling abrogates systemic autoimmunity in a novel mouse model for autoimmune pancreatitis. Pancreatology, 2012, 12, 579-580.	1.1	0
147	Comparative effectiveness of immune-cell depletion and a targeted therapy against LTβR-signaling in the treatment of autoimmune pancreatitis. Pancreatology, 2014, 14, S18.	1.1	Ο
148	The Authors Reply. Kidney International, 2016, 89, 1161-1162.	5.2	0
149	An infectious cause of acute kidney injury with low serum potassium. BMJ Case Reports, 2015, 2015, bcr2015209910.	0.5	0