Tor D Wager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3322922/publications.pdf Version: 2024-02-01

TOP D WACEP

#	Article	IF	CITATIONS
1	The Unity and Diversity of Executive Functions and Their Contributions to Complex "Frontal Lobe― Tasks: A Latent Variable Analysis. Cognitive Psychology, 2000, 41, 49-100.	2.2	11,093
2	Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 2011, 8, 665-670.	19.0	2,993
3	Functional Neuroimaging of Anxiety: A Meta-Analysis of Emotional Processing in PTSD, Social Anxiety Disorder, and Specific Phobia. American Journal of Psychiatry, 2007, 164, 1476-1488.	7.2	2,789
4	A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews, 2012, 36, 747-756.	6.1	2,180
5	The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 2012, 35, 121-143.	0.7	1,768
6	Valid conjunction inference with the minimum statistic. NeuroImage, 2005, 25, 653-660.	4.2	1,743
7	Placebo-Induced Changes in fMRI in the Anticipation and Experience of Pain. Science, 2004, 303, 1162-1167.	12.6	1,731
8	Neuroimaging studies of working memory:. Cognitive, Affective and Behavioral Neuroscience, 2003, 3, 255-274.	2.0	1,635
9	Large-Scale Network Dysfunction in Major Depressive Disorder. JAMA Psychiatry, 2015, 72, 603.	11.0	1,517
10	Prefrontal-Subcortical Pathways Mediating Successful Emotion Regulation. Neuron, 2008, 59, 1037-1050.	8.1	1,471
11	Cognitive Reappraisal of Emotion: A Meta-Analysis of Human Neuroimaging Studies. Cerebral Cortex, 2014, 24, 2981-2990.	2.9	1,391
12	An fMRI-Based Neurologic Signature of Physical Pain. New England Journal of Medicine, 2013, 368, 1388-1397.	27.0	1,294
13	The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 2018, 32, 43-54.	4.0	1,282
14	Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. NeuroImage, 2003, 19, 513-531.	4.2	1,061
15	Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage, 2014, 91, 412-419.	4.2	1,059
16	Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 2008, 42, 998-1031.	4.2	1,010
17	Building better biomarkers: brain models in translational neuroimaging. Nature Neuroscience, 2017, 20, 365-377.	14.8	764
18	Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 2012, 16, 147-156.	7.8	705

#	Article	IF	CITATIONS
19	A Meta-analysis of Functional Neuroimaging Studies of Self- and Other Judgments Reveals a Spatial Gradient for Mentalizing in Medial Prefrontal Cortex. Journal of Cognitive Neuroscience, 2012, 24, 1742-1752.	2.3	671
20	Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 1-17.	2.0	667
21	Neurobiological Mechanisms of the Placebo Effect. Journal of Neuroscience, 2005, 25, 10390-10402.	3.6	598
22	Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage, 2004, 22, 1679-1693.	4.2	584
23	Ten simple rules for neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 2018, 84, 151-161.	6.1	564
24	The neuroscience of placebo effects: connecting context, learning and health. Nature Reviews Neuroscience, 2015, 16, 403-418.	10.2	555
25	Placebo effects on human μ-opioid activity during pain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11056-11061.	7.1	516
26	The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature. Cerebral Cortex, 2016, 26, 1910-1922.	2.9	489
27	Social rejection shares somatosensory representations with physical pain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6270-6275.	7.1	478
28	Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling. NeuroImage, 2009, 45, S187-S198.	4.2	435
29	Common and unique components of response inhibition revealed by fMRI. Neurolmage, 2005, 27, 323-340.	4.2	430
30	The resilience framework as a strategy to combat stress-related disorders. Nature Human Behaviour, 2017, 1, 784-790.	12.0	420
31	Meta-analysis of functional neuroimaging data: current and future directions. Social Cognitive and Affective Neuroscience, 2007, 2, 150-158.	3.0	408
32	Brain mediators of cardiovascular responses to social threat. NeuroImage, 2009, 47, 821-835.	4.2	395
33	Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neurolmage, 2003, 18, 293-309.	4.2	392
34	Brain Mediators of Predictive Cue Effects on Perceived Pain. Journal of Neuroscience, 2010, 30, 12964-12977.	3.6	355
35	Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. NeuroImage, 2009, 45, 810-823.	4.2	337
36	Implications of Placebo and Nocebo Effects for Clinical Practice: Expert Consensus. Psychotherapy and Psychosomatics, 2018, 87, 204-210.	8.8	318

#	Article	IF	CITATIONS
37	How expectations shape pain. Neuroscience Letters, 2012, 520, 140-148.	2.1	294
38	A Sensitive and Specific Neural Signature for Picture-Induced Negative Affect. PLoS Biology, 2015, 13, e1002180.	5.6	283
39	Brain mediators of cardiovascular responses to social threat, Part II: Prefrontal-subcortical pathways and relationship with anxiety. NeuroImage, 2009, 47, 836-851.	4.2	270
40	Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization. Journal of Neuroscience, 2016, 36, 6553-6562.	3.6	268
41	The relation between statistical power and inference in fMRI. PLoS ONE, 2017, 12, e0184923.	2.5	263
42	Predicting Individual Differences in Placebo Analgesia: Contributions of Brain Activity during Anticipation and Pain Experience. Journal of Neuroscience, 2011, 31, 439-452.	3.6	258
43	Increased sensitivity in neuroimaging analyses using robust regression. Neurolmage, 2005, 26, 99-113.	4.2	256
44	Detection of time-varying signals in event-related fMRI designs. NeuroImage, 2008, 43, 509-520.	4.2	243
45	How the number of learning trials affects placebo and nocebo responses. Pain, 2010, 151, 430-439.	4.2	243
46	Common Dysfunction of Large-Scale Neurocognitive Networks Across Psychiatric Disorders. Biological Psychiatry, 2019, 85, 379-388.	1.3	240
47	Dynamic connectivity regression: Determining state-related changes in brain connectivity. Neurolmage, 2012, 61, 907-920.	4.2	238
48	The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. Neurolmage, 2011, 57, 303-311.	4.2	235
49	Separate neural representations for physical pain and social rejection. Nature Communications, 2014, 5, 5380.	12.8	229
50	Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nature Reviews Neurology, 2020, 16, 381-400.	10.1	224
51	Distinct Brain Systems Mediate the Effects of Nociceptive Input and Self-Regulation on Pain. PLoS Biology, 2015, 13, e1002036.	5.6	222
52	Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nature Reviews Neurology, 2017, 13, 624-638.	10.1	220
53	Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage, 2009, 45, S210-S221.	4.2	215
54	A Bayesian Model of Category-Specific Emotional Brain Responses. PLoS Computational Biology, 2015, 11, e1004066.	3.2	212

#	Article	lF	CITATIONS
55	Representation of aversive prediction errors in the human periaqueductal gray. Nature Neuroscience, 2014, 17, 1607-1612.	14.8	208
56	Towards a neurophysiological signature for fibromyalgia. Pain, 2017, 158, 34-47.	4.2	194
57	Performance-dependent inhibition of pain by an executive working memory task. Pain, 2010, 149, 19-26.	4.2	190
58	Regional specialization within the human striatum for diverse psychological functions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1907-1912.	7.1	188
59	Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nature Neuroscience, 2018, 21, 283-289.	14.8	187
60	Brain-Body Pathways Linking Psychological Stress and Physical Health. Current Directions in Psychological Science, 2015, 24, 313-321.	5.3	176
61	Somatic and vicarious pain are represented by dissociable multivariate brain patterns. ELife, 2016, 5, .	6.0	176
62	Cognitive neuroscience 2.0: building a cumulative science of human brain function. Trends in Cognitive Sciences, 2010, 14, 489-496.	7.8	173
63	The Anatomy of Suffering: Understanding the Relationship between Nociceptive and Empathic Pain. Trends in Cognitive Sciences, 2016, 20, 249-259.	7.8	167
64	Modular preprocessing pipelines can reintroduce artifacts into fMRI data. Human Brain Mapping, 2019, 40, 2358-2376.	3.6	159
65	Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging. Neuron, 2018, 99, 257-273.	8.1	156
66	Dissociable Influences of Opiates and Expectations on Pain. Journal of Neuroscience, 2012, 32, 8053-8064.	3.6	146
67	Quantifying cerebral contributions to pain beyond nociception. Nature Communications, 2017, 8, 14211.	12.8	144
68	The Placebo Effect: Advances from Different Methodological Approaches. Journal of Neuroscience, 2011, 31, 16117-16124.	3.6	143
69	Empathic Care and Distress: Predictive Brain Markers and Dissociable Brain Systems. Neuron, 2017, 94, 1263-1273.e4.	8.1	140
70	Pain in the ACC?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2474-5.	7.1	136
71	Placebo Effects on the Neurologic Pain Signature. JAMA Neurology, 2018, 75, 1321.	9.0	131
72	Brain Mechanisms of the Placebo Effect: An Affective Appraisal Account. Annual Review of Clinical Psychology, 2017, 13, 73-98.	12.3	130

#	Article	IF	CITATIONS
73	Correlations in Social Neuroscience Aren't Voodoo: Commentary on Vul et al. (2009). Perspectives on Psychological Science, 2009, 4, 299-307.	9.0	127
74	Identification of discrete functional subregions of the human periaqueductal gray. Proceedings of the United States of America, 2013, 110, 17101-17106.	7.1	125
75	Placebo effects in laser-evoked pain potentials. Brain, Behavior, and Immunity, 2006, 20, 219-230.	4.1	119
76	Patient Expectancy as a Mediator of Placebo Effects in Antidepressant Clinical Trials. American Journal of Psychiatry, 2017, 174, 135-142.	7.2	117
77	The Potential Role of Sensory Testing, Skin Biopsy, and Functional Brain Imaging as Biomarkers in Chronic Pain Clinical Trials: IMMPACT Considerations. Journal of Pain, 2017, 18, 757-777.	1.4	115
78	Transition to chronic pain: opportunities for novel therapeutics. Nature Reviews Neuroscience, 2018, 19, 383-384.	10.2	113
79	Functional neuroanatomy of peripheral inflammatory physiology: A meta-analysis of human neuroimaging studies. Neuroscience and Biobehavioral Reviews, 2018, 94, 76-92.	6.1	113
80	Emotion schemas are embedded in the human visual system. Science Advances, 2019, 5, eaaw4358.	10.3	111
81	The Pain of Sleep Loss: A Brain Characterization in Humans. Journal of Neuroscience, 2019, 39, 2291-2300.	3.6	111
82	A Meta-analysis of Brain Mechanisms of Placebo Analgesia: Consistent Findings and Unanswered Questions. Handbook of Experimental Pharmacology, 2014, 225, 37-69.	1.8	110
83	What's in a word? How instructions, suggestions, and social information change pain and emotion. Neuroscience and Biobehavioral Reviews, 2017, 81, 29-42.	6.1	109
84	The Cognitive Neuroscience of Placebo Effects: Concepts, Predictions, and Physiology. Annual Review of Neuroscience, 2017, 40, 167-188.	10.7	108
85	A neuroimaging biomarker for sustained experimental and clinical pain. Nature Medicine, 2021, 27, 174-182.	30.7	108
86	Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. NeuroImage, 2005, 25, 206-218.	4.2	106
87	The self in context: brain systems linking mental and physical health. Nature Reviews Neuroscience, 2021, 22, 309-322.	10.2	102
88	Brain mediators of the effects of noxious heat on pain. Pain, 2014, 155, 1632-1648.	4.2	101
89	Effect Size Estimation in Neuroimaging. JAMA Psychiatry, 2017, 74, 207.	11.0	96
90	Conditioned Placebo Analgesia Persists When Subjects Know TheyÂAre Receiving a Placebo. Journal of Pain, 2015, 16, 412-420.	1.4	92

#	Article	IF	CITATIONS
91	Sex differences in extinction recall in posttraumatic stress disorder: A pilot fMRI study. Neurobiology of Learning and Memory, 2014, 113, 101-108.	1.9	90
92	Behavioural and neural evidence for self-reinforcing expectancy effects on pain. Nature Human Behaviour, 2018, 2, 838-855.	12.0	88
93	Toward a unified framework for interpreting machine-learning models in neuroimaging. Nature Protocols, 2020, 15, 1399-1435.	12.0	88
94	Neural changes in extinction recall following prolonged exposure treatment for PTSD: A longitudinal fMRI study. NeuroImage: Clinical, 2016, 12, 715-723.	2.7	87
95	Bad and worse: neural systems underlying reappraisal of high- and low-intensity negative emotions. Social Cognitive and Affective Neuroscience, 2015, 10, 172-179.	3.0	86
96	Effect of Pain Reprocessing Therapy vs Placebo and Usual Care for Patients With Chronic Back Pain. JAMA Psychiatry, 2022, 79, 13.	11.0	85
97	Distraction and Placebo. Psychological Science, 2012, 23, 246-253.	3.3	84
98	Modeling Pain Using fMRI: From Regions to Biomarkers. Neuroscience Bulletin, 2018, 34, 208-215.	2.9	82
99	Multivariate Brain Prediction of Heart Rate and Skin Conductance Responses to Social Threat. Journal of Neuroscience, 2016, 36, 11987-11998.	3.6	81
100	Neuroimaging-based biomarkers for pain: state of the field and current directions. Pain Reports, 2019, 4, e751.	2.7	81
101	Functional MRI Can Be Highly Reliable, but It Depends on What You Measure: A Commentary on Elliott et al. (2020). Psychological Science, 2021, 32, 622-626.	3.3	79
102	Common representation of pain and negative emotion in the midbrain periaqueductal gray. Social Cognitive and Affective Neuroscience, 2013, 8, 609-616.	3.0	78
103	Involvement of Sensory Regions in Affective Experience: A Meta-Analysis. Frontiers in Psychology, 2015, 6, 1860.	2.1	78
104	Gender Biases in Estimation of Others' Pain. Journal of Pain, 2021, 22, 1048-1059.	1.4	78
105	High-dimensional multivariate mediation with application to neuroimaging data. Biostatistics, 2018, 19, 121-136.	1.5	76
106	Toward a taxonomy of attention shifting: Individual differences in fMRI during multiple shift types. Cognitive, Affective and Behavioral Neuroscience, 2005, 5, 127-143.	2.0	75
107	Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data. Nature Communications, 2021, 12, 1391.	12.8	75
108	The neural bases of uninstructed negative emotion modulation. Social Cognitive and Affective Neuroscience, 2015, 10, 10-18.	3.0	73

#	Article	IF	CITATIONS
109	Social anxiety is characterized by biased learning about performance and the self Emotion, 2017, 17, 1144-1155.	1.8	72
110	Altered resting state functional connectivity of fear and reward circuitry in comorbid PTSD and major depression. Depression and Anxiety, 2017, 34, 641-650.	4.1	71
111	Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. Molecular Psychiatry, 2021, 26, 4315-4330.	7.9	69
112	Empathic pain evoked by sensory and emotional-communicative cues share common and process-specific neural representations. ELife, 2020, 9, .	6.0	69
113	Brain mechanisms of social touch-induced analgesia in females. Pain, 2019, 160, 2072-2085.	4.2	67
114	A distributed fMRI-based signature for the subjective experience of fear. Nature Communications, 2021, 12, 6643.	12.8	67
115	Deconstructing arousal into wakeful, autonomic and affective varieties. Neuroscience Letters, 2019, 693, 19-28.	2.1	66
116	Expectations and anxiety as mediators of placebo effects in pain. Pain, 2005, 115, 225-226.	4.2	65
117	The Dynamics of Pain: Evidence for Simultaneous Site-Specific Habituation and Site-Nonspecific Sensitization in Thermal Pain. Journal of Pain, 2014, 15, 734-746.	1.4	64
118	Beyond conformity: Social influences on pain reports and physiology Emotion, 2016, 16, 24-32.	1.8	64
119	Socially transmitted placebo effects. Nature Human Behaviour, 2019, 3, 1295-1305.	12.0	62
120	Mind matters: placebo enhances reward learning in Parkinson's disease. Nature Neuroscience, 2014, 17, 1793-1797.	14.8	61
121	Different brain networks mediate the effects of social and conditioned expectations on pain. Nature Communications, 2019, 10, 4096.	12.8	61
122	Neuroimaging-based biomarker discovery and validation. Pain, 2015, 156, 1379-1381.	4.2	60
123	Metaâ€analysis of neuroimaging data. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 293-300.	2.8	59
124	Group-regularized individual prediction: theory and application to pain. NeuroImage, 2017, 145, 274-287.	4.2	59
125	Effects of compassion meditation on a psychological model of charitable donation Emotion, 2016, 16, 691-705.	1.8	58
126	Acute neural effects of selective serotonin reuptake inhibitors versus noradrenaline reuptake inhibitors on emotion processing: Implications for differential treatment efficacy. Neuroscience and Biobehavioral Reviews, 2013, 37, 1786-1800.	6.1	57

#	Article	IF	CITATIONS
127	Exposure-based therapy changes amygdala and hippocampus resting-state functional connectivity in patients with posttraumatic stress disorder. Depression and Anxiety, 2018, 35, 974-984.	4.1	56
128	Orbitofrontal cortex mediates pain inhibition by monetary reward. Social Cognitive and Affective Neuroscience, 2017, 12, 651-661.	3.0	55
129	Anticipatory brain activity predicts the success or failure of subsequent emotion regulation. Social Cognitive and Affective Neuroscience, 2014, 9, 403-411.	3.0	53
130	A Brain Phenotype for Stressorâ€Evoked Blood Pressure Reactivity. Journal of the American Heart Association, 2017, 6, .	3.7	53
131	Sex differences in the emotional brain. NeuroReport, 2005, 16, 85-87.	1.2	51
132	Let it be: mindful acceptance down-regulates pain and negative emotion. Social Cognitive and Affective Neuroscience, 2019, 14, 1147-1158.	3.0	51
133	Behavioral and Neural Signatures of Working Memory in Childhood. Journal of Neuroscience, 2020, 40, 5090-5104.	3.6	50
134	The new field of Brain–Body Medicine: What have we learned and where are we headed?. NeuroImage, 2009, 47, 1135-1140.	4.2	49
135	Meta Analysis of Functional Neuroimaging Data via Bayesian Spatial Point Processes. Journal of the American Statistical Association, 2011, 106, 124-134.	3.1	48
136	Dynamic functional connectivity using state-based dynamic community structure: Method and application to opioid analgesia. NeuroImage, 2015, 108, 274-291.	4.2	46
137	Multiple Brain Networks Mediating Stimulus–Pain Relationships in Humans. Cerebral Cortex, 2020, 30, 4204-4219.	2.9	46
138	Touch and social support influence interpersonal synchrony and pain. Social Cognitive and Affective Neuroscience, 2020, 15, 1064-1075.	3.0	45
139	Neural and sociocultural mediators of ethnic differences in pain. Nature Human Behaviour, 2020, 4, 517-530.	12.0	43
140	Characterization and reduction of cardiac- and respiratory-induced noise as a function of the sampling rate (TR) in fMRI. NeuroImage, 2014, 89, 314-330.	4.2	42
141	Conceptual Conditioning. Psychological Science, 2015, 26, 1728-1739.	3.3	42
142	Mechanisms of placebo analgesia: A dual-process model informed by insights from cross-species comparisons. Progress in Neurobiology, 2018, 160, 101-122.	5.7	41
143	Estimating and testing variance components in a multi-level GLM. NeuroImage, 2012, 59, 490-501.	4.2	39
144	Frontal-Brainstem Pathways Mediating Placebo Effects on Social Rejection. Journal of Neuroscience, 2017, 37, 3621-3631.	3.6	39

#	Article	IF	CITATIONS
145	False-positive neuroimaging: Undisclosed flexibility in testing spatial hypotheses allows presenting anything as a replicated finding. NeuroImage, 2019, 195, 384-395.	4.2	39
146	Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems. Frontiers in Psychology, 2014, 5, 1580.	2.1	38
147	Human and Mouse Transcriptome Profiling Identifies Cross-Species Homology in Pulmonary and Lymph Node Mononuclear Phagocytes. Cell Reports, 2020, 33, 108337.	6.4	38
148	Opposing Effects of Expectancy and Somatic Focus on Pain. PLoS ONE, 2012, 7, e38854.	2.5	38
149	Feelings of Clinician-Patient Similarity and Trust Influence Pain: Evidence From Simulated Clinical Interactions. Journal of Pain, 2017, 18, 787-799.	1.4	37
150	Pain-Evoked Reorganization in Functional Brain Networks. Cerebral Cortex, 2020, 30, 2804-2822.	2.9	37
151	Specifying the non-specific factors underlying opioid analgesia: expectancy, attention, and affect. Psychopharmacology, 2014, 231, 813-823.	3.1	36
152	Common and stimulus-type-specific brain representations of negative affect. Nature Neuroscience, 2022, 25, 760-770.	14.8	36
153	Brain systems at the intersection of chronic pain and self-regulation. Neuroscience Letters, 2019, 702, 24-33.	2.1	35
154	A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 2021, 109, 2404-2412.e5.	8.1	35
155	Conflict, error likelihood, and RT: Response to Brown & Yeung et al NeuroImage, 2011, 57, 320-322.	4.2	34
156	Common and distinct neural representations of aversive somatic and visceral stimulation in healthy individuals. Nature Communications, 2020, 11, 5939.	12.8	33
157	Imaging biomarkers and biotypes for depression. Nature Medicine, 2017, 23, 16-17.	30.7	32
158	Age of gray matters: Neuroprediction of recidivism. NeuroImage: Clinical, 2018, 19, 813-823.	2.7	32
159	What are emotions and how are they created in the brain?. Behavioral and Brain Sciences, 2012, 35, 172-202.	0.7	31
160	Placebos without deception reduce self-report and neural measures of emotional distress. Nature Communications, 2020, 11, 3785.	12.8	31
161	Influence of dorsolateral prefrontal cortex and ventral striatum on risk avoidance in addiction: A mediation analysis. Drug and Alcohol Dependence, 2015, 149, 10-17.	3.2	30
162	A Generalizable Multivariate Brain Pattern for Interpersonal Guilt. Cerebral Cortex, 2020, 30, 3558-3572.	2.9	30

#	Article	IF	CITATIONS
163	Large-scale Meta-analysis Suggests Low Regional Modularity in Lateral Frontal Cortex. Cerebral Cortex, 2018, 28, 3414-3428.	2.9	28
164	How Is Pain Influenced by Cognition? Neuroimaging Weighs In. Perspectives on Psychological Science, 2013, 8, 91-97.	9.0	27
165	Transforming Pain With Prosocial Meaning: A Functional Magnetic Resonance Imaging Study. Psychosomatic Medicine, 2018, 80, 814-825.	2.0	27
166	What reliability can and cannot tell us about pain report and pain neuroimaging. Pain, 2016, 157, 511-513.	4.2	26
167	Effect sizes and test-retest reliability of the fMRI-based neurologic pain signature. NeuroImage, 2022, 247, 118844.	4.2	26
168	A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta-analysis. Annals of Applied Statistics, 2014, 8, 1800-1824.	1.1	24
169	Serotonin transporter polymorphism alters citalopram effects on human pain responses to physical pain. Neurolmage, 2016, 135, 186-196.	4.2	24
170	Functional Involvement of Human Periaqueductal Gray and Other Midbrain Nuclei in Cognitive Control. Journal of Neuroscience, 2019, 39, 6180-6189.	3.6	23
171	When pain really matters: A vicarious-pain brain marker tracks empathy for pain in the romantic partner. Neuropsychologia, 2020, 145, 106427.	1.6	23
172	Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats. ELife, 2021, 10, .	6.0	22
173	Placebo effects in the brain: Linking mental and physiological processesâ~†. Brain, Behavior, and Immunity, 2005, 19, 281-282.	4.1	21
174	Patients with schizophrenia are impaired when learning in the context of pursuing rewards. Schizophrenia Research, 2014, 152, 309-310.	2.0	21
175	Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence. Neuropsychologia, 2019, 125, 93-108.	1.6	20
176	Cognitive and Motivational Functions of the Human Prefrontal Cortex. , 2009, , 30-61.		20
177	Individual variability in brain representations of pain. Nature Neuroscience, 2022, 25, 749-759.	14.8	20
178	Individual differences in multiple types of shifting attention. Memory and Cognition, 2006, 34, 1730-1743.	1.6	19
179	Multiple faces of pain: effects of chronic pain on the brain regulation of facial expression. Pain, 2016, 157, 1819-1830.	4.2	19
180	Generalization of learned pain modulation depends on explicit learning. Acta Psychologica, 2018, 184, 75-84.	1.5	19

#	Article	IF	CITATIONS
181	Distinct fMRI patterns colocalized in the cingulate cortex underlie the after-effects of cognitive control on pain. NeuroImage, 2020, 217, 116898.	4.2	18
182	Clinician-Patient Movement Synchrony Mediates Social Group Effects on Interpersonal Trust and Perceived Pain. Journal of Pain, 2020, 21, 1160-1174.	1.4	17
183	Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study. The Lancet Digital Health, 2020, 2, e458-e467.	12.3	16
184	Emerging Clinical Technology: Application of Machine Learning to Chronic Pain Assessments Based on Emotional Body Maps. Neurotherapeutics, 2020, 17, 774-783.	4.4	16
185	The neural bases of distracter-resistant working memory. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 90-105.	2.0	15
186	Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data. Biometrics, 2018, 74, 342-353.	1.4	15
187	Neural mechanisms of expectancy-based placebo effects in antidepressant clinical trials. Journal of Psychiatric Research, 2019, 116, 19-25.	3.1	15
188	The conceptual building blocks of everyday thought: Tracking the emergence and dynamics of ruminative and nonruminative thinking Journal of Experimental Psychology: General, 2022, 151, 628-642.	2.1	15
189	Brain Predictors of Individual Differences in Placebo Responding. , 2013, , 89-102.		14
190	Brain and psychological mediators of imitation: sociocultural versus physical traits. Culture and Brain, 2015, 3, 93-111.	0.5	14
191	Improving Practices for Selecting a Subset of Important Predictors in Psychology: An Application to Predicting Pain. Advances in Methods and Practices in Psychological Science, 2020, 3, 66-80.	9.4	14
192	Interactions between donor Agreeableness and recipient characteristics in predicting charitable donation and positive social evaluation. PeerJ, 2015, 3, e1089.	2.0	13
193	Prevention of Stress-Provoked Endothelial Injury by Values Affirmation: a Proof of Principle Study. Annals of Behavioral Medicine, 2016, 50, 471-479.	2.9	12
194	Cognitive self-regulation influences pain-related physiology. Pain, 2019, 160, 2338-2349.	4.2	12
195	The emotional brain: Fundamental questions and strategies for future research. Neuroscience Letters, 2019, 693, 68-74.	2.1	12
196	Redefining innate natural antibodies as important contributors to anti-tumor immunity. ELife, 2021, 10,	6.0	12
197	Bayesian Log-Gaussian Cox Process Regression: Applications to Meta-Analysis of Neuroimaging Working Memory Studies. Journal of the Royal Statistical Society Series C: Applied Statistics, 2019, 68, 217-234.	1.0	11
198	Evidence for decreased Neurologic Pain Signature activation following thoracic spinal manipulation in healthy volunteers and participants with neck pain. NeuroImage: Clinical, 2019, 24, 102042.	2.7	11

#	Article	IF	CITATIONS
199	A multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems. PLoS Biology, 2022, 20, e3001620.	5.6	11
200	The Social Brain, Stress, and Psychopathology. JAMA Psychiatry, 2014, 71, 622.	11.0	10
201	Neural and genetic markers of vulnerability to post-traumatic stress symptoms among survivors of the World Trade Center attacks. Social Cognitive and Affective Neuroscience, 2015, 10, 863-868.	3.0	10
202	Neural mediators of subjective and autonomic responding during threat learning and regulation. NeuroImage, 2021, 245, 118643.	4.2	10
203	Partial Amelioration of Medial Visceromotor Network Dysfunction in Major Depression by Sertraline. Psychosomatic Medicine, 2015, 77, 752-761.	2.0	9
204	Imaging Brain Mechanisms of Functional Somatic Syndromes: Potential as a Biomarker?. Tohoku Journal of Experimental Medicine, 2020, 250, 137-152.	1.2	9
205	Expectancies and Beliefs. , 2013, , .		8
206	The Neural Correlates of Cued Reward Omission. Frontiers in Human Neuroscience, 2021, 15, 615313.	2.0	8
207	Effects of compassion training on brain responses to suffering others. Social Cognitive and Affective Neuroscience, 2021, 16, 1036-1047.	3.0	8
208	Test-Retest Reliability of an Adaptive Thermal Pain Calibration Procedure in Healthy Volunteers. Journal of Pain, 2022, 23, 1543-1555.	1.4	8
209	The neural signature of the decision value of future pain. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
210	fMRI in analgesic drug discovery. Science Translational Medicine, 2015, 7, 274fs6.	12.4	7
211	When it hurts even more: The neural dynamics of pain and interpersonal emotions. Journal of Psychosomatic Research, 2020, 128, 109881.	2.6	7
212	The challenges of forecasting resilience. Behavioral and Brain Sciences, 2015, 38, e98.	0.7	6
213	Novel Cognitive Functions Arise at the Convergence of Macroscale Gradients. Journal of Cognitive Neuroscience, 2022, 34, 381-396.	2.3	6
214	Issues in Pain Prediction $\hat{a} \in \mathcal{C}$ More Gain than Pain. Trends in Neurosciences, 2016, 39, 639-640.	8.6	5
215	Disentangling opposing effects of motivational states on pain perception. Pain Reports, 2016, 1, e574.	2.7	5
216	Brain markers predicting response to cognitiveâ€behavioral therapy for social anxiety disorder: an independent replication of Whitfield-Gabrieli et al. 2015. Translational Psychiatry, 2021, 11, 260.	4.8	5

#	Article	IF	CITATIONS
217	The neurologic pain signature responds to nonsteroidal anti-inflammatory treatment vs placebo in knee osteoarthritis. Pain Reports, 2022, 7, e986.	2.7	5
218	Establishing homology between monkey and human brains. Nature Methods, 2012, 9, 237-239.	19.0	4
219	Investigating the specificity of the neurologic pain signature against breathlessness and finger opposition. Pain, 2021, 162, 2933-2944.	4.2	4
220	Multi-Site Observational Study to Assess Biomarkers for Susceptibility or Resilience to Chronic Pain: The Acute to Chronic Pain Signatures (A2CPS) Study Protocol. Frontiers in Medicine, 2022, 9, 849214.	2.6	4
221	Introduction to †Tools of the Trade'. Social Cognitive and Affective Neuroscience, 2006, 1, 72-72.	3.0	3
222	Fundamentals of Functional Neuroimaging. , 0, , 41-73.		3
223	Painometry. , 2020, , .		3
224	Neuropsychologia special issue editorial: The neural basis of emotion. Neuropsychologia, 2020, 145, 107507.	1.6	2
225	Toward a Brain-Based Bio-Marker of Guilt. Neuroscience Insights, 2020, 15, 263310552095763.	1.6	2
226	The Brain Activation-Based Sexual Image Classifier (BASIC): A Sensitive and Specific fMRI Activity Pattern for Sexual Image Processing. Cerebral Cortex, 2021, , .	2.9	1
227	The neural bases of distracter-resistant working memory. Nature Precedings, 2011, , .	0.1	0
228	Reply. Pain, 2016, 157, 1576-1577.	4.2	0
229	Laterality and Stimulation Bias in Meta-analysis of Placebo Responses—Reply. JAMA Neurology, 2019, 76, 870.	9.0	0
230	Introduction to the special issue on functional neuroimaging of the emotional brain. Neuroscience Letters, 2019, 693, 1-2.	2.1	0
231	Reproducible, Generalizable Brain Models of Affective Processes. Nebraska Symposium on Motivation, 2019, , 221-263.	0.9	0