Ang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3322407/publications.pdf

Version: 2024-02-01

361413 434195 2,336 31 20 31 citations h-index g-index papers 31 31 31 1458 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The reinforced photothermal effect of conjugated dyelgraphene oxide-based phase change materials: Fluorescence resonance energy transfer and applications in solar-thermal energy storage. Chemical Engineering Journal, 2022, 428, 130605.	12.7	17
2	Engineering attractive interaction in ZIF-based phase change materials for boosting electro- and photo- driven thermal energy storage. Chemical Engineering Journal, 2022, 430, 133007.	12.7	27
3	Metal-organic framework derived magnetic phase change nanocage for fast-charging solar-thermal energy conversion. Nano Energy, 2022, 99, 107383.	16.0	26
4	Modulation of the charge transfer behavior of Ni(II)-doped NH2-MIL-125(Ti): Regulation of Ni ions content and enhanced photocatalytic CO2 reduction performance. Chemical Engineering Journal, 2021, 406, 126886.	12.7	83
5	Cobalt-embedded few-layered carbon nanosheets toward enhanced hydrogen evolution: Rational design and insight into structure-performance correlation. Journal of Energy Chemistry, 2021, 58, 156-161.	12.9	1
6	Advanced multifunctional composite phase change materials based on photo-responsive materials. Nano Energy, 2021, 80, 105454.	16.0	129
7	Understanding molecular motion mechanism of phase change materials in mesoporous MCM-41. Microporous and Mesoporous Materials, 2021, 312, 110741.	4.4	6
8	Fine-Tuning the Metal Oxo Cluster Composition and Phase Structure of Ni/Ti Bimetallic MOFs for Efficient CO ₂ Reduction. Journal of Physical Chemistry C, 2021, 125, 9200-9209.	3.1	23
9	Construction of dual ligand Ti-based MOFs with enhanced photocatalytic CO2 reduction performance. Journal of CO2 Utilization, 2021, 48, 101528.	6.8	39
10	Encapsulation of lauric acid in reduced graphene-N-doped porous carbon supporting scaffold for multi-functional phase change composites. Renewable Energy, 2021, 170, 661-668.	8.9	18
11	Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications. Nano Energy, 2021, 85, 105948.	16.0	164
12	Molecular insights into the interaction mechanism between C18 phase change materials and methyl-modified carbon nanotubes. Ceramics International, 2021, 47, 23564-23570.	4.8	8
13	Fabrication and Elastic Properties of TiO ₂ Nanohelix Arrays through a Pressure-Induced Hydrothermal Method. ACS Nano, 2021, 15, 14174-14184.	14.6	7
14	Assembly of flexible nanohelix films: stress–exporting insights into the electrochemical performance of lithium–ion batteries. Materials Today Nano, 2021, 16, 100141.	4.6	4
15	Metalloporphyrin-Decorated Titanium Dioxide Nanosheets for Efficient Photocatalytic Carbon Dioxide Reduction. Inorganic Chemistry, 2021, 60, 18337-18346.	4.0	14
16	Self-assembly engineering toward large-area defect-rich TiO2(B) nanosheets-based free-standing films for high-performance lithium-ion batteries. Journal of Power Sources, 2020, 448, 227458.	7.8	18
17	Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy and Environmental Science, 2020, 13, 4498-4535.	30.8	181
18	Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement. Materials Science and Engineering C, 2020, 116, 111197.	7. 3	38

#	Article	IF	CITATIONS
19	Network Structural CNTs Penetrate Porous Carbon Support for Phaseâ€Change Materials with Enhanced Electroâ€Thermal Performance. Advanced Electronic Materials, 2020, 6, 1901428.	5.1	26
20	Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials. Energy Storage Materials, 2019, 18, 349-355.	18.0	105
21	Ambient pressure dried flexible silica aerogel for construction of monolithic shape-stabilized phase change materials. Solar Energy Materials and Solar Cells, 2019, 201, 110122.	6.2	44
22	Facile synthesis of Ag-CuO/SBA-15 for aerobic epoxidation of olefins with high activity. Nanotechnology, 2019, 30, 434002.	2.6	1
23	Cobalt-tuned nickel phosphide nanoparticles for highly efficient electrocatalysis. Applied Surface Science, 2019, 479, 1254-1261.	6.1	34
24	Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Materials, 2019, 18, 280-288.	18.0	86
25	Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal, 2019, 356, 641-661.	12.7	459
26	Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting. Nano Energy, 2018, 49, 86-94.	16.0	200
27	Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity. Applied Energy, 2018, 217, 369-376.	10.1	91
28	Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review. Nano Energy, 2018, 53, 769-797.	16.0	260
29	Hierarchical 3D Reduced Graphene Porous-Carbon-Based PCMs for Superior Thermal Energy Storage Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32093-32101.	8.0	85
30	Influence and mechanism of spreading and solidification behavior on cross section geometry of tin single tracks formed by liquid metal flow rapid cooling additive manufacturing. Ferroelectrics, 2018, 528, 139-149.	0.6	3
31	Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity. Chemical Engineering Journal, 2018, 350, 164-172.	12.7	139