S Stephen Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3319439/publications.pdf

Version: 2024-02-01

48 4,897 26 45 g-index

52 52 52 52 8609

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	A Proteome-Scale Map of the Human Interactome Network. Cell, 2014, 159, 1212-1226.	28.9	1,199
2	Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders. Cell, 2015, 161, 647-660.	28.9	482
3	Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell, 2016, 164, 805-817.	28.9	479
4	Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell, 2018, 33, 450-462.e10.	16.8	213
5	TOS9 Regulates White-Opaque Switching in Candida albicans. Eukaryotic Cell, 2006, 5, 1674-1687.	3.4	207
6	N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in Candida albicans. PLoS Pathogens, 2010, 6, e1000806.	4.7	180
7	CO2 Regulates White-to-Opaque Switching in Candida albicans. Current Biology, 2009, 19, 330-334.	3.9	160
8	Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nature Communications, 2014, 5, 3650.	12.8	131
9	Edgotype: a fundamental link between genotype and phenotype. Current Opinion in Genetics and Development, 2013, 23, 649-657.	3.3	129
10	HSP90 Shapes the Consequences of Human Genetic Variation. Cell, 2017, 168, 856-866.e12.	28.9	117
11	An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Research, 2016, 26, 670-680.	5.5	116
12	LncMAP: Pan-cancer atlas of long noncoding RNA-mediated transcriptional network perturbations. Nucleic Acids Research, 2018, 46, 1113-1123.	14.5	115
13	Survey of variation in human transcription factors reveals prevalent DNA binding changes. Science, 2016, 351, 1450-1454.	12.6	114
14	Human Gene-Centered Transcription Factor Networks for Enhancers and Disease Variants. Cell, 2015, 161, 661-673.	28.9	111
15	Pooledâ€matrix protein interaction screens using Barcode Fusion Genetics. Molecular Systems Biology, 2016, 12, 863.	7.2	102
16	Multi-omics analysis reveals neoantigen-independent immune cell infiltration in copy-number driven cancers. Nature Communications, 2018, 9, 1317.	12.8	94
17	In Situ Peroxidase Labeling and Mass-Spectrometry Connects Alpha-Synuclein Directly to Endocytic Trafficking and mRNA Metabolism in Neurons. Cell Systems, 2017, 4, 242-250.e4.	6.2	91
18	Tec1 Mediates the Pheromone Response of the White Phenotype of Candida albicans: Insights into the Evolution of New Signal Transduction Pathways. PLoS Biology, 2010, 8, e1000363.	5.6	85

#	Article	lF	CITATIONS
19	Functional variomics and network perturbation: connecting genotype to phenotype in cancer. Nature Reviews Genetics, 2017, 18, 395-410.	16.3	84
20	Alternative Mating Type Configurations (a \hat{l} ± versus a/a or \hat{l} ± \hat{l} ±) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways. PLoS Biology, 2011, 9, e1001117.	5.6	73
21	The Same Receptor, G Protein, and Mitogen-activated Protein Kinase Pathway Activate Different Downstream Regulators in the Alternative White and Opaque Pheromone Responses of <i>Candida albicans </i> . Molecular Biology of the Cell, 2008, 19, 957-970.	2.1	60
22	Genes Selectively Up-Regulated by Pheromone in White Cells Are Involved in Biofilm Formation in Candida albicans. PLoS Pathogens, 2009, 5, e1000601.	4.7	59
23	The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod of Dictyostelium amoebae during chemotaxis. Journal of Cell Science, 2006, 119, 370-379.	2.0	51
24	Revealing the Determinants of Widespread Alternative Splicing Perturbation in Cancer. Cell Reports, 2017, 21, 798-812.	6.4	51
25	Transcranial Near Infrared Light Stimulations Improve Cognition in Patients with Dementia. , 2021, 12, 954.		46
26	Gain-of-Function Mutations: An Emerging Advantage for Cancer Biology. Trends in Biochemical Sciences, 2019, 44, 659-674.	7. 5	38
27	A <i>Candida albicans</i> àêspecific region of the αâ€pheromone receptor plays a selective role in the white cell pheromone response. Molecular Microbiology, 2009, 71, 925-947.	2.5	37
28	Dark brown is the more virulent of the switch phenotypes of Candida glabrata. Microbiology (United) Tj ETQq0 (0 0 1ggBT /0	Overlock 10 Ti 28
29	MERIT: Systematic Analysis and Characterization of Mutational Effect on RNA Interactome Topology. Hepatology, 2019, 70, 532-546.	7. 3	28
30	Nonsex Genes in the Mating Type Locus of Candida albicans Play Roles in a \hat{l} Biofilm Formation, Including Impermeability and Fluconazole Resistance. PLoS Pathogens, 2012, 8, e1002476.	4.7	27
31	Utilization of the Mating Scaffold Protein in the Evolution of a New Signal Transduction Pathway for Biofilm Development. MBio, 2011, 2, e00237-10.	4.1	24
32	The White Cell Response to Pheromone Is a General Characteristic of Candida albicans Strains. Eukaryotic Cell, 2009, 8, 251-256.	3.4	23
33	Self-Induction of $\langle b\rangle a \langle b\rangle / \langle b\rangle a \langle b\rangle$ or $\hat{l} \pm \hat{l} \pm \hat{l}$ Biofilms in Candida albicans Is a Pheromone-Based Paracrine System Requiring Switching. Eukaryotic Cell, 2011, 10, 753-760.	3.4	22
34	Gene Regulatory Network Perturbation by Genetic and Epigenetic Variation. Trends in Biochemical Sciences, 2018, 43, 576-592.	7. 5	20
35	Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures. Oncotarget, 2016, 7, 78841-78849.	1.8	14
36	Pathway perturbations in signaling networks: Linking genotype to phenotype. Seminars in Cell and Developmental Biology, 2020, 99, 3-11.	5.0	13

#	Article	IF	Citations
37	Base-resolution stratification of cancer mutations using functional variomics. Nature Protocols, 2017, 12, 2323-2341.	12.0	11
38	Integrated Genomic Characterization of the Human Immunome in Cancer. Cancer Research, 2020, 80, 4854-4867.	0.9	11
39	e-MutPath: computational modeling reveals the functional landscape of genetic mutations rewiring interactome networks. Nucleic Acids Research, 2021, 49, e2-e2.	14.5	10
40	mi-IsoNet: systems-scale microRNA landscape reveals rampant isoform-mediated gain of target interaction diversity and signaling specificity. Briefings in Bioinformatics, 2021, 22, .	6.5	9
41	Metabolomics-based phenotypic screens for evaluation of drug synergy via direct-infusion mass spectrometry. IScience, 2022, 25, 104221.	4.1	8
42	Multi-OMICs and Genome Editing Perspectives on Liver Cancer Signaling Networks. BioMed Research International, 2016, 2016, 1-14.	1.9	7
43	Gender Differences of Dementia in Response to Intensive Self-Administered Transcranial and Intraocular Near-Infrared Stimulation. Cureus, 2021, 13, e16188.	0.5	7
44	Polycomb Repressive Complex 2 is essential for development and maintenance of a functional TEC compartment. Scientific Reports, 2018, 8, 14335.	3. 3	5
45	Regulome networks and mutational landscape in liver cancer: An informative path to precision medicine. Hepatology, 2017, 66, 280-282.	7.3	2
46	Timing of Resumption of Anticoagulation After Polypectomy and Frequency of Post-procedural Complications: A Post-hoc Analysis. Digestive Diseases and Sciences, 2022, 67, 3210-3219.	2.3	2
47	Computational Advances in Cancer Informatics (A). Cancer Informatics, 2014, 13s1, CIN.S19243.	1.9	0
48	Signal Transduction and Regulation: Insights into Evolution. BioMed Research International, 2016, 2016, 1-2.	1.9	0