List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/331840/publications.pdf Version: 2024-02-01

ΙΟΗΝ Κ ΒΔΩΗΙΚΕ

#	Article	IF	CITATIONS
1	A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Analytical Chemistry, 2001, 73, 4145-4153.	6.5	1,493
2	DENITRIFICATION ACROSS LANDSCAPES AND WATERSCAPES: A SYNTHESIS. , 2006, 16, 2064-2090.		1,326
3	Measurement of the Oxygen Isotopic Composition of Nitrate in Seawater and Freshwater Using the Denitrifier Method. Analytical Chemistry, 2002, 74, 4905-4912.	6.5	1,236
4	Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry, 2003, 75, 683-800.	1.9	848
5	METHODS FOR MEASURING DENITRIFICATION: DIVERSE APPROACHES TO A DIFFICULT PROBLEM. , 2006, 16, 2091-2122.		757
6	Combined Use of Groundwater Dating, Chemical, and Isotopic Analyses to Resolve the History and Fate of Nitrate Contamination in Two Agricultural Watersheds, Atlantic Coastal Plain, Maryland. Water Resources Research, 1995, 31, 2319-2339.	4.2	575
7	Isotope-abundance variations of selected elements (IUPAC Technical Report). Pure and Applied Chemistry, 2002, 74, 1987-2017.	1.9	386
8	Oxygen isotopes in nitrate: new reference materials for180:170:160 measurements and observations on nitrate-water equilibration. Rapid Communications in Mass Spectrometry, 2003, 17, 1835-1846.	1.5	371
9	Atomic weights of the elements 2011 (IUPAC Technical Report). Pure and Applied Chemistry, 2013, 85, 1047-1078.	1.9	348
10	Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin?. Chemical Geology, 1988, 71, 211-222.	3.3	279
11	Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions. Geochimica Et Cosmochimica Acta, 2004, 68, 4023-4038.	3.9	271
12	Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance. Water Resources Research, 2013, 49, 6298-6316.	4.2	269
13	Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resources Research, 2002, 38, 10-1-10-26.	4.2	228
14	Isotopic Compositions of the Elements, 2001. Journal of Physical and Chemical Reference Data, 2005, 34, 57-67.	4.2	212
15	Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry, 2009, 93, 91-116.	3.5	212
16	Oxygen Isotopes in Nitrite:Â Analysis, Calibration, and Equilibration. Analytical Chemistry, 2007, 79, 2427-2436.	6.5	211
17	Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A Chemical Geology, 1997, 136, 135-152.	3.3	204
18	Two new organic reference materials forĺ 13C andĺ 15N measurements and a new value for theĺ 13C of NBS 22 oil. Rapid Communications in Mass Spectrometry, 2003, 17, 2483-2487.	1.5	190

#	Article	IF	CITATIONS
19	Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Applied Geochemistry, 1990, 5, 625-630.	3.0	171
20	Comprehensive interâ€laboratory calibration of reference materials for <i>δ</i> ¹⁸ O versus VSMOW using various onâ€line highâ€temperature conversion techniques. Rapid Communications in Mass Spectrometry, 2009, 23, 999-1019.	1.5	167
21	Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies. Water Resources Research, 2006, 42, .	4.2	158
22	Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids. Geochimica Et Cosmochimica Acta, 1992, 56, 203-225.	3.9	153
23	Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chemical Geology, 2001, 179, 93-111.	3.3	152
24	Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States. Water Resources Research, 2006, 42, .	4.2	132
25	Reachâ€scale isotope tracer experiment to quantify denitrification and related processes in a nitrateâ€rich stream, midcontinent United States. Limnology and Oceanography, 2004, 49, 821-838.	3.1	126
26	Multi-scale measurements and modeling of denitrification in streams with varying flow and nitrate concentration in the upper Mississippi River basin, USA. Biogeochemistry, 2009, 93, 117-141.	3.5	124
27	Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Applied Geochemistry, 2000, 15, 599-609.	3.0	123
28	Determination of the Total Oxygen Isotopic Composition of Nitrate and the Calibration of a Δ17Ο Nitrate Reference Material. Analytical Chemistry, 2002, 74, 4989-4993.	6.5	122
29	Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer. Water Resources Research, 2010, 46, .	4.2	121
30	Denitrification and mixing in a stream—aquifer system: effects on nitrate loading to surface water. Journal of Hydrology, 1996, 186, 105-128.	5.4	120
31	Timescales for nitrate contamination of spring waters, northern Florida, USA. Chemical Geology, 2001, 179, 167-186.	3.3	118
32	Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeology Journal, 2012, 20, 263-282.	2.1	117
33	Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel. Journal of Hydrology, 2004, 290, 312-328.	5.4	115
34	Biogeochemical Evolution of a Landfill Leachate Plume, Norman, Oklahoma. Ground Water, 2011, 49, 663-687.	1.3	111
35	Isotopic Composition and Origin of Indigenous Natural Perchlorate and Co-Occurring Nitrate in the Southwestern United States. Environmental Science & Construction (2010, 44, 4869-4876.	10.0	110
36	Perchlorate Isotope Forensics. Analytical Chemistry, 2005, 77, 7838-7842.	6.5	109

#	Article	IF	CITATIONS
37	A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeology Journal, 2011, 19, 779-800.	2.1	109
38	Limited Occurrence of Denitrification in Four Shallow Aquifers in Agricultural Areas of the United States. Journal of Environmental Quality, 2008, 37, 994-1009.	2.0	108
39	Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Applied Geochemistry, 2004, 19, 1655-1686.	3.0	102
40	Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochimica Et Cosmochimica Acta, 2015, 164, 502-522.	3.9	90
41	Comparison of metasomatic reactions between a common CO 2 -rich vein fluid and diverse wall rocks; intensive variables, mass transfers, and Au mineralization at Alleghany, California. Economic Geology, 1989, 84, 291-327.	3.8	87
42	Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resources Research, 2012, 48, .	4.2	84
43	The oxygenâ€18 isotope approach for measuring aquatic metabolism in high productivity waters. Limnology and Oceanography, 2007, 52, 1439-1453.	3.1	80
44	Role of Anaerobic Ammonium Oxidation (Anammox) in Nitrogen Removal from a Freshwater Aquifer. Environmental Science & Technology, 2015, 49, 12169-12177.	10.0	78
45	Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: Analyses of microstandards and synthetic inclusions in quartz. Geochimica Et Cosmochimica Acta, 1992, 56, 187-201.	3.9	77
46	Regional Patterns in the Isotopic Composition of Natural and Anthropogenic Nitrate in Groundwater, High Plains, U.S.A Environmental Science & Technology, 2006, 40, 2965-2970.	10.0	76
47	Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States. Water Resources Research, 2008, 44, .	4.2	75
48	Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer. Geochimica Et Cosmochimica Acta, 2017, 196, 102-120.	3.9	74
49	Using dual-bacterial denitrification to improvel 15N determinations of nitrates containing mass-independent17O. Rapid Communications in Mass Spectrometry, 2004, 18, 245-250.	1.5	73
50	DENITRIFICATION IN NITRATE-RICH STREAMS: APPLICATION OF N2:Ar AND15N-TRACER METHODS IN INTACT CORES. , 2006, 16, 2191-2207.		72
51	Atacama Perchlorate as an Agricultural Contaminant in Groundwater: Isotopic and Chronologic Evidence from Long Island, New York. Environmental Science & Technology, 2009, 43, 5619-5625.	10.0	72
52	Oxygen and Chlorine Isotopic Fractionation during Perchlorate Biodegradation:Â Laboratory Results and Implications for Forensics and Natural Attenuation Studies. Environmental Science & Technology, 2007, 41, 2796-2802.	10.0	71
53	Determination of δ18O and δ15N in Nitrate. Analytical Chemistry, 1997, 69, 4375-4380.	6.5	69
54	Perchlorate in Pleistocene and Holocene Groundwater in North-Central New Mexico. Environmental Science & Technology, 2006, 40, 1757-1763.	10.0	69

#	Article	IF	CITATIONS
55	Natural Chlorate in the Environment: Application of a New IC-ESI/MS/MS Method with a Cl ¹⁸ O ₃ ⁻ Internal Standard. Environmental Science & Technology, 2010, 44, 8429-8434.	10.0	69
56	EFFECTS OF TOPOGRAPHY AND SOIL PROPERTIES ON RECHARGE AT TWO SITES IN AN AGRICULTURAL FIELD. Journal of the American Water Resources Association, 2000, 36, 1401-1416.	2.4	68
57	Ground Water Stratification and Delivery of Nitrate to an Incised Stream under Varying Flow Conditions. Journal of Environmental Quality, 2007, 36, 664-680.	2.0	67
58	Aquifer-scale controls on the distribution of nitrate and ammonium in ground water near La Pine, Oregon, USA. Journal of Hydrology, 2007, 333, 486-503.	5.4	66
59	Isotopic Analysis of N and O in Nitrite and Nitrate by Sequential Selective Bacterial Reduction to N2O. Analytical Chemistry, 2007, 79, 5888-5895.	6.5	66
60	IUPAC Periodic Table of the Elements and Isotopes (IPTEI) for the Education Community (IUPAC) Tj ETQq0 0 0 rg	BT ₁ /Qverlc	ock 10 Tf 50 5
61	Reporting of nitrogen-isotope abundances (Technical Report). Pure and Applied Chemistry, 1992, 64, 907-908.	1.9	64
62	Effects of surface-water irrigation on sources, fluxes, and residence times of water, nitrate, and uranium in an alluvial aquifer. Applied Geochemistry, 2007, 22, 152-174.	3.0	60
63	NEW REFERENCE MATERIALS FOR NITROGEN-ISOTOPE-RATIO MEASUREMENTS. Geostandards and Geoanalytical Research, 1993, 17, 159-164.	3.1	59
64	Brine history indicated by argon, krypton, chlorine, bromine, and iodine analyses of fluid inclusions from the Mississippi Valley type lead-fluorite-barite deposits at Hansonburg, New Mexico. Earth and Planetary Science Letters, 1992, 110, 51-66.	4.4	57
65	Constraining the Oxygen Isotopic Composition of Nitrate Produced by Nitrification. Environmental Science & Technology, 2019, 53, 1206-1216.	10.0	57
66	Standard atomic weights of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry, 2022, 94, 573-600.	1.9	57
67	Chlorine-36 as a Tracer of Perchlorate Origin. Environmental Science & Technology, 2009, 43, 6934-6938.	10.0	52
68	Ammonium in thermal waters of Yellowstone National Park: Processes affecting speciation and isotope fractionation. Geochimica Et Cosmochimica Acta, 2011, 75, 4611-4636.	3.9	52
69	Tritium/3He Dating of River Infiltration: An Example from the Danube in the Szigetkoz Area, Hungary. Ground Water, 1997, 35, 905-911.	1.3	51
70	Radium isotope geochemistry of thermal waters, Yellowstone National Park, Wyoming, USA. Geochimica Et Cosmochimica Acta, 1993, 57, 1203-1214.	3.9	50
71	Assessment of Nitrification Potential in Ground Water Using Short Term, Single-Well Injection Experiments. Microbial Ecology, 2006, 51, 22-35.	2.8	50
72	Assessing denitrification in groundwater using natural gradient tracer tests with15N: In situ measurement of a sequential multistep reaction. Water Resources Research, 2004, 40, .	4.2	45

#	Article	IF	CITATIONS
73	Denitrification in marine shales in northeastern Colorado. Water Resources Research, 1999, 35, 1629-1642.	4.2	43
74	Widespread occurrence of (per)chlorate in the Solar System. Earth and Planetary Science Letters, 2015, 430, 470-476.	4.4	42
75	Deposition, accumulation, and alteration of Clâ^', NO3â^', ClO4â^' and ClO3â^' salts in a hyper-arid polar environment: Mass balance and isotopic constraints. Geochimica Et Cosmochimica Acta, 2016, 182, 197-215.	3.9	42
76	Ecohydrological Factors Affecting Nitrate Concentrations in a Phreatic Desert Aquifer in Northwestern China. Environmental Science & amp; Technology, 2008, 42, 3531-3537.	10.0	41
77	A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells. Journal of Hydrology, 2016, 543, 109-126.	5.4	41
78	A simple technique for continuous measurement of timeâ€variable gas transfer in surface waters. Limnology and Oceanography: Methods, 2009, 7, 185-195.	2.0	40
79	Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters. Science of the Total Environment, 2008, 407, 324-332.	8.0	39
80	Biogeochemistry at a wetland sediment–alluvial aquifer interface in a landfill leachate plume. Journal of Contaminant Hydrology, 2009, 105, 99-117.	3.3	39
81	Ground Water Beneath Coastal Bays of the Delmarva Peninsula: Ages and Nutrients. Ground Water, 2004, 42, 1021-1034.	1.3	38
82	Simulated response of water quality in public supply wells to land use change. Water Resources Research, 2008, 44, .	4.2	34
83	Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer. Environmental Chemistry, 2009, 6, 44.	1.5	34
84	Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets. Water Research, 2018, 141, 387-404.	11.3	31
85	Carbonate-sulfide equilibria and "stratabound―disseminated epigenetic gold mineralization: a proposal based on examples from Alleghany, California, U.S.A Applied Geochemistry, 1988, 3, 499-516.	3.0	30
86	Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence. Environmental Science & Technology, 2016, 50, 593-603.	10.0	30
87	Soil, Plant, and Terrain Effects on Natural Perchlorate Distribution in a Desert Landscape. Journal of Environmental Quality, 2014, 43, 980-994.	2.0	29
88	Radium-thorium disequilibrium and zeolite-water ion exchange in a Yellowstone hydrothermal environment. Geochimica Et Cosmochimica Acta, 1989, 53, 1025-1034.	3.9	26
89	Application of stable isotope ratio analysis for biodegradation monitoring in groundwater. Current Opinion in Biotechnology, 2013, 24, 542-549.	6.6	25
90	Groundwater Record of Halocarbon Transport by the Danube River. Environmental Science & amp; Technology, 1997, 31, 3293-3299.	10.0	24

#	Article	IF	CITATIONS
91	Response of deep groundwater to land use change in desert basins of the Transâ€Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes. Hydrological Processes, 2017, 31, 2349-2364.	2.6	24
92	Tracking the fate of nitrate through pulse-flow wetlands: A mesocosm scale 15N enrichment tracer study. Ecological Engineering, 2017, 106, 597-608.	3.6	21
93	Assessing the Seasonal Dynamics of Nitrate and Sulfate Aerosols at the South Pole Utilizing Stable Isotopes. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8161-8177.	3.3	21
94	Flow and geochemistry of groundwater beneath a back-barrier lagoon: The subterranean estuary at Chincoteague Bay, Maryland, USA. Marine Chemistry, 2009, 113, 78-92.	2.3	20
95	Nitrification and denitrification in a midwestern stream containing high nitrate: in situ assessment using tracers in dome-shaped incubation chambers. Biogeochemistry, 2009, 96, 189-208.	3.5	19
96	Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA. Hydrogeology Journal, 2012, 20, 1189-1201.	2.1	19
97	Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA). Hydrogeology Journal, 2015, 23, 467-491.	2.1	19
98	Seasonality of nitrate sources and isotopic composition in the Upper Illinois River. Journal of Hydrology, 2019, 568, 849-861.	5.4	19
99	Stable Isotopic Composition of Chlorine and Oxygen in Synthetic and Natural Perchlorate. , 2006, , 93-109.		19
100	The fate of wastewater-derived nitrate in the subsurface of the Florida Keys: Key Colony Beach, Florida. Estuarine, Coastal and Shelf Science, 2003, 58, 517-539.	2.1	18
101	Chemical Considerations for an Updated National Assessment of Brackish Groundwater Resources. Ground Water, 2016, 54, 464-475.	1.3	17
102	Relating Carbon and Nitrogen Isotope Effects to Reaction Mechanisms during Aerobic or Anaerobic Degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Pure Bacterial Cultures. Applied and Environmental Microbiology, 2016, 82, 3297-3309.	3.1	17
103	Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from water samples. Rapid Communications in Mass Spectrometry, 2008, 22, 4109-4120.	1.5	15
104	Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA. Science of the Total Environment, 2009, 407, 4363-4377.	8.0	15
105	Methane and nitrous oxide temporal and spatial variability in two midwestern USA streams containing high nitrate concentrations. Science of the Total Environment, 2019, 685, 574-588.	8.0	15
106	Exploring the Potential of Electrospray-Orbitrap for Stable Isotope Analysis Using Nitrate as a Model. Analytical Chemistry, 2021, 93, 9139-9148.	6.5	15
107	Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data. Science of the Total Environment, 2017, 595, 556-566.	8.0	14
108	Biological and geochemical controls on diel dissolved inorganic carbon cycling in a low-order agricultural stream: Implications for reach scales and beyond. Chemical Geology, 2010, 283, 18-18.	3.3	13

#	Article	IF	CITATIONS
109	Stable isotope analyses of oxygen (¹⁸ 0: ¹⁷ 0: ¹⁶ 0) and chlorine (³⁷ Cl: ³⁵ Cl) in perchlorate: reference materials, calibrations, methods, and interferences. Rapid Communications in Mass Spectrometry, 2017, 31, 85-110.	1.5	13
110	Isotopic Tracing of Perchlorate in the Environment. Advances in Isotope Geochemistry, 2012, , 437-452.	1.4	13
111	Tracing the Cycling and Fate of the Explosive 2,4,6-Trinitrotoluene in Coastal Marine Systems with a Stable Isotopic Tracer, ¹⁵ N-[TNT]. Environmental Science & Technology, 2015, 49, 12223-12231.	10.0	12
112	Four-dimensional isotopic approach to identify perchlorate sources in groundwater: Application to the Rialto-Colton and Chino subbasins, southern California (USA). Applied Geochemistry, 2018, 97, 213-225.	3.0	12
113	Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning. Hydrology and Earth System Sciences, 2021, 25, 811-829.	4.9	12
114	Variation in the terrestrial isotopic composition and atomic weight of argon (IUPAC Technical) Tj ETQq0 0 0 rgB1	Qverloc	10 Tf 50 54
115	The influence of sample matrix on the accuracy of nitrite N and O isotope ratio analyses with the azide method. Rapid Communications in Mass Spectrometry, 2020, 34, e8569.	1.5	11
116	Seasonal and Spatial Variation in the Location and Reactivity of a Nitrate ontaminated Groundwater Discharge Zone in a Lakebed. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2186-2207.	3.0	10
117	Hydrology and Biogeochemistry Linkages. , 2011, , 271-304.		8
118	Clarification of the term "normal material―used for standard atomic weights (IUPAC Technical) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
119	Tracing the cycling and fate of the munition, Hexahydro-1,3,5-trinitro-1,3,5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, 15N-[RDX]. Science of the Total Environment, 2019, 647, 369-378.	8.0	7
120	Densityâ€Driven Freeâ€Convection Model for Isotopically Fractionated Geogenic Nitrate in Sabkha Brine. Ground Water, 2017, 55, 199-207.	1.3	6
121	Isotopic composition of natural and synthetic chlorate (δ180, Î`'170, δ37Cl, 36Cl/Cl): Methods and initial results. Chemosphere, 2021, 274, 129586.	8.2	6
122	Origin of the isotopic composition of natural perchlorate: Experimental results for the impact of reaction pathway and initial CIOx reactant. Geochimica Et Cosmochimica Acta, 2021, 311, 292-315.	3.9	6
123	Educational Webtool Illustrating Groundwater Age Effects on Contaminant Trends in Wells. Ground Water, 2014, 52, 8-9.	1.3	5
124	Effects of Mother Lode-Type Gold Mineralization on 187Os/188Os and Platinum Group Element Concentrations in Peridotite: Alleghany District, California. Economic Geology, 2007, 102, 1079-1089.	3.8	4
125	Degradation of RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) in contrasting coastal marine habitats: Subtidal non-vegetated (sand), subtidal vegetated (silt/eel grass), and intertidal marsh. Science of the Total Environment, 2020, 745, 140800.	8.0	3
126	Isotopic discrimination of natural and anthropogenic perchlorate sources in groundwater in a semi-arid region of northeastern Oregon (USA). Applied Geochemistry, 2022, 139, 105232.	3.0	2