List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3317090/publications.pdf Version: 2024-02-01

SAMI ΡΤΙΜΙ

#	Article	IF	CITATIONS
1	Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Applied Catalysis B: Environmental, 2019, 241, 256-269.	10.8	440
2	Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 2021, 18, 3273-3294.	1.8	287
3	Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. Journal of Environmental Management, 2021, 290, 112627.	3.8	122
4	Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Applied Catalysis B: Environmental, 2019, 240, 291-318.	10.8	112
5	lron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size Journal of Hazardous Materials, 2017, 339, 223-231.	6.5	111
6	A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids. Applied Catalysis B: Environmental, 2017, 219, 538-549.	10.8	96
7	Light-Assisted Advanced Oxidation Processes for the Elimination of Chemical and Microbiological Pollution of Wastewaters in Developed and Developing Countries. Molecules, 2017, 22, 1070.	1.7	93
8	Magnetically separable TiO2/FeOx/POM accelerating the photocatalytic removal of the emerging endocrine disruptor: 2,4-dichlorophenol. Applied Catalysis B: Environmental, 2019, 254, 66-75.	10.8	86
9	Study of a photocatalytic process for removal of antibiotics from wastewater in a falling film photoreactor: Scavenger study and process intensification feasibility. Chemical Engineering and Processing: Process Intensification, 2017, 122, 213-221.	1.8	78
10	Effect of Fe(II)/Fe(III) species, pH, irradiance and bacterial presence on viral inactivation in wastewater by the photo-Fenton process: Kinetic modeling and mechanistic interpretation. Applied Catalysis B: Environmental, 2017, 204, 156-166.	10.8	77
11	Bacterial disinfection by the photo-Fenton process: Extracellular oxidation or intracellular photo-catalysis?. Applied Catalysis B: Environmental, 2018, 227, 285-295.	10.8	75
12	Kinetics and mechanism for transparent polyethylene-TiO 2 films mediated self-cleaning leading to MB dye discoloration under sunlight irradiation. Applied Catalysis B: Environmental, 2015, 162, 236-244.	10.8	73
13	Recent progress in black phosphorus nanostructures as environmental photocatalysts. Chemical Engineering Journal, 2020, 379, 122297.	6.6	73
14	Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives. Environmental Science and Pollution Research, 2020, 27, 36052-36074.	2.7	72
15	Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability. Surface and Coatings Technology, 2013, 232, 804-813.	2.2	70
16	Preparation and Mechanism of Cu-Decorated TiO ₂ –ZrO ₂ Films Showing Accelerated Bacterial Inactivation. ACS Applied Materials & Interfaces, 2015, 7, 12832-12839.	4.0	68
17	Quantification of the local magnetized nanotube domains accelerating the photocatalytic removal of the emerging pollutant tetracycline. Applied Catalysis B: Environmental, 2019, 248, 450-458.	10.8	68
18	Study of synergetic effect, catalytic poisoning and regeneration using dielectric barrier discharge and photocatalysis in a continuous reactor: Abatement of pollutants in air mixture system. Applied Catalysis B: Environmental, 2017, 213, 53-61.	10.8	64

#	Article	IF	CITATIONS
19	TiON and TiON-Ag sputtered surfaces leading to bacterial inactivation under indoor actinic light. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 256, 52-63.	2.0	62
20	Preparation and applications of chitosan and cellulose composite materials. Journal of Environmental Management, 2022, 301, 113850.	3.8	60
21	Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HiPIMS on polyester cloth under low intensity visible light. Applied Catalysis B: Environmental, 2019, 259, 118074.	10.8	58
22	FeOx magnetization enhancing E. coli inactivation by orders of magnitude on Ag-TiO2 nanotubes under sunlight. Applied Catalysis B: Environmental, 2017, 202, 438-445.	10.8	57
23	Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloids and Surfaces B: Biointerfaces, 2018, 170, 92-98.	2.5	57
24	Microstructure of Cu–Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties. ACS Applied Materials & Interfaces, 2016, 8, 56-63.	4.0	56
25	Abatement of ammonia and butyraldehyde under non-thermal plasma and photocatalysis: Oxidation processes for the removal of mixture pollutants at pilot scale. Chemical Engineering Journal, 2018, 344, 165-172.	6.6	55
26	Castles fall from inside: Evidence for dominant internal photo-catalytic mechanisms during treatment of Saccharomyces cerevisiae by photo-Fenton at near-neutral pH. Applied Catalysis B: Environmental, 2016, 185, 150-162.	10.8	53
27	Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives. Environmental Technology and Innovation, 2021, 24, 102090.	3.0	53
28	Innovative TiO ₂ /Cu Nanosurfaces Inactivating Bacteria in the Minute Range under Low-Intensity Actinic Light. ACS Applied Materials & Interfaces, 2012, 4, 5234-5240.	4.0	51
29	Quasi-Instantaneous Bacterial Inactivation on Cu–Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics. ACS Applied Materials & Interfaces, 2016, 8, 47-55.	4.0	51
30	Synchronic coupling of Cu2O(p)/CuO(n) semiconductors leading to Norfloxacin degradation under visible light: Kinetics, mechanism and film surface properties. Journal of Catalysis, 2017, 353, 133-140.	3.1	51
31	Polystyrene CuO/Cu 2 O uniform films inducing MB-degradation under sunlight. Catalysis Today, 2017, 284, 77-83.	2.2	51
32	Synergistic Effect of Fluorinated and N Doped TiO2 Nanoparticles Leading to Different Microstructure and Enhanced Photocatalytic Bacterial Inactivation. Nanomaterials, 2017, 7, 391.	1.9	51
33	Insight on the photocatalytic bacterial inactivation by co-sputtered TiO 2 –Cu in aerobic and anaerobic conditions. Applied Catalysis B: Environmental, 2016, 182, 277-285.	10.8	49
34	Photocatalytic Performance of CuxO/TiO2 Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation. Materials, 2019, 12, 412.	1.3	49
35	Effect of the spectral properties of TiO2, Cu, TiO2/Cu sputtered films on the bacterial inactivation under low intensity actinic light. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 50-56.	2.0	48
36	Evidence for a dual mechanism in the TiO2/CuxO photocatalyst during the degradation of sulfamethazine under solar or visible light: Critical issues. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 270-279.	2.0	48

#	Article	IF	CITATIONS
37	Evidence for the degradation of an emerging pollutant by a mechanism involving iso-energetic charge transfer under visible light. Applied Catalysis B: Environmental, 2018, 233, 175-183.	10.8	47
38	Supported TiO2 films deposited at different energies: Implications of the surface compactness on the catalytic kinetics Applied Catalysis B: Environmental, 2016, 191, 42-52.	10.8	46
39	New evidence for TiO 2 uniform surfaces leading to complete bacterial reduction in the dark: Critical issues. Colloids and Surfaces B: Biointerfaces, 2014, 123, 593-599.	2.5	45
40	Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: Dynamics and mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 94-102.	2.0	45
41	Innovative transparent non-scattering TiO2 bactericide thin films inducing increased E. coli cell wall fluidity. Surface and Coatings Technology, 2014, 254, 333-343.	2.2	44
42	Innovative semi-transparent nanocomposite films presenting photo-switchable behavior and leading to a reduction of the risk of infection under sunlight. RSC Advances, 2013, 3, 16345.	1.7	43
43	Simultaneous removal of bacteria and volatile organic compounds on Cu2O-NPs decorated TiO2 nanotubes: Competition effect and kinetic studies. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112722.	2.0	43
44	Solar light and the photo-Fenton process against antibiotic resistant bacteria in wastewater: A kinetic study with a Streptomycin-resistant strain. Catalysis Today, 2018, 313, 86-93.	2.2	41
45	Indoor Light Enhanced Photocatalytic Ultra-Thin Films on Flexible Non-Heat Resistant Substrates Reducing Bacterial Infection Risks. Catalysts, 2017, 7, 57.	1.6	39
46	Discoloration of simulated textile effluent in continuous photoreactor using immobilized titanium dioxide: Effect of zinc and sodium chloride. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 111-120.	2.0	39
47	Photocatalysis/catalysis by innovative TiN and TiN-Ag surfaces inactivate bacteria under visible light. Applied Catalysis B: Environmental, 2012, 123-124, 306-315.	10.8	38
48	ZrNO–Ag co-sputtered surfaces leading to E. coli inactivation under actinic light: Evidence for the oligodynamic effect. Applied Catalysis B: Environmental, 2013, 138-139, 113-121.	10.8	38
49	<i>In Vitro</i> and <i>In Vivo</i> Effectiveness of an Innovative Silver-Copper Nanoparticle Coating of Catheters To Prevent Methicillin-Resistant Staphylococcus aureus Infection. Antimicrobial Agents and Chemotherapy, 2016, 60, 5349-5356.	1.4	37
50	Synergism between non-thermal plasma and photocatalysis: Implicationsin the post discharge of ozone at a pilot scale in a catalytic fixed-bed reactor. Applied Catalysis B: Environmental, 2019, 241, 227-235.	10.8	37
51	Duality in the Mechanism of Hexagonal ZnO/CuxO Nanowires Inducing Sulfamethazine Degradation under Solar or Visible Light. Catalysts, 2019, 9, 916.	1.6	37
52	RF-plasma pretreatment of surfaces leading to TiO2 coatings with improved optical absorption and OH-radical production. Applied Catalysis B: Environmental, 2013, 130-131, 65-72.	10.8	36
53	Effect of surface pretreatment of TiO ₂ films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation. Interface Focus, 2015, 5, 20140046.	1.5	36
54	Indoor air treatment of refrigerated food chambers with synergetic association between cold plasma and photocatalysis: Process performance and photocatalytic poisoning. Chemical Engineering Journal, 2020, 382, 122951.	6.6	35

#	Article	IF	CITATIONS
55	New evidence for hybrid acrylic/TiO2 films inducing bacterial inactivation under low intensity simulated sunlight. Colloids and Surfaces B: Biointerfaces, 2015, 135, 1-7.	2.5	34
56	Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light. Coatings, 2017, 7, 20.	1.2	34
57	Combining photocatalytic process and biological treatment for Reactive Green 12 degradation: optimization, mineralization, and phytotoxicity with seed germination. Environmental Science and Pollution Research, 2021, 28, 12490-12499.	2.7	34
58	Synthesis and characterization of fluorinated anatase nanoparticles and subsequent N-doping for efficient visible light activated photocatalysis. Colloids and Surfaces B: Biointerfaces, 2018, 171, 445-450.	2.5	33
59	Photocatalytic degradation of binary and ternary mixtures of antibiotics: reactive species investigation in pilot scale. Chemical Engineering Research and Design, 2019, 144, 300-309.	2.7	33
60	Insight into the interaction of magnetic photocatalysts with the incoming light accelerating bacterial inactivation and environmental cleaning. Applied Catalysis B: Environmental, 2021, 281, 119420.	10.8	33
61	Hydrogen-based sono-hybrid catalytic degradation and mitigation of industrially-originated dye-based pollutants. International Journal of Hydrogen Energy, 2023, 48, 6597-6612.	3.8	31
62	Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: Implications of the interfacial charge transfer (IFCT). Journal of Hazardous Materials, 2013, 260, 860-868.	6.5	30
63	Comparison of HIPIMS sputtered Ag- and Cu-surfaces leading to accelerated bacterial inactivation in the dark. Surface and Coatings Technology, 2014, 250, 14-20.	2.2	28
64	Heterogeneous advanced oxidation processes over stoichiometric ABO3 perovskite nanostructures. Materials Today Nano, 2022, 18, 100184.	2.3	28
65	Design, testing and characterization of innovative TiN–TiO2 surfaces inactivating bacteria under low intensity visible light. RSC Advances, 2012, 2, 8591.	1.7	26
66	Accelerated bacterial reduction on Ag–TaN compared with Ag–ZrN and Ag–TiN surfaces. Applied Catalysis B: Environmental, 2015, 174-175, 376-382.	10.8	26
67	Insights into the Photocatalytic Bacterial Inactivation by Flower-Like Bi2WO6 under Solar or Visible Light, Through in Situ Monitoring and Determination of Reactive Oxygen Species (ROS). Water (Switzerland), 2020, 12, 1099.	1.2	26
68	Novel FeOx–polyethylene transparent films: synthesis and mechanism of surface regeneration. RSC Advances, 2015, 5, 80203-80211.	1.7	25
69	Bactericidal activity and mechanism of action of copper-sputtered flexible surfaces against multidrug-resistant pathogens. Applied Microbiology and Biotechnology, 2016, 100, 5945-5953.	1.7	25
70	Photocatalytic performance of TiO 2 impregnated polyester for the degradation of Reactive Green 12: Implications of the surface pretreatment and the microstructure. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 493-501.	2.0	25
71	Femtosecond Spectroscopy of Au Hot-Electron Injection into TiO2: Evidence for Au/TiO2 Plasmon Photocatalysis by Bactericidal Au Ions and Related Phenomena. Nanomaterials, 2019, 9, 217.	1.9	25
72	Uniform TiO2/In2O3 surface films effective in bacterial inactivation under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 279, 1-7.	2.0	24

#	Article	IF	CITATIONS
73	Flower-like magnetized photocatalysts accelerating an emerging pollutant removal under indoor visible light and related phenomena. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 105-113.	2.0	23
74	Innovative photocatalyst (FeO _x –TiO ₂): transients induced by femtosecond laser pulse leading to bacterial inactivation under visible light. RSC Advances, 2015, 5, 101751-101759.	1.7	22
75	Insight into the catalyst/photocatalyst microstructure presenting the same composition but leading to a variance in bacterial reduction under indoor visible light. Applied Catalysis B: Environmental, 2017, 208, 135-147.	10.8	22
76	Innovative and stable TiO 2 supported catalytic surfaces removing aldehydes under UV-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 343, 96-102.	2.0	22
77	Fungicidal activity of copper-sputtered flexible surfaces under dark and actinic light against azole-resistant Candida albicans and Candida glabrata. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 229-234.	1.7	22
78	Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: Adsorption properties and statistical physics modeling. Chemical Engineering Journal, 2022, 445, 136773.	6.6	22
79	Duality in the Escherichia coli and methicillin resistant Staphylococcus aureus reduction mechanism under actinic light on innovative co-sputtered surfaces. Applied Catalysis A: General, 2015, 498, 185-191.	2.2	21
80	Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes. Analyst, The, 2016, 141, 4121-4129.	1.7	21
81	Bactericide effects of transparent polyethylene photocatalytic films coated by oxides under visible light. Applied Catalysis B: Environmental, 2017, 213, 62-73.	10.8	21
82	Mechanisms of the Antibacterial Effects of TiO2–FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance. Coatings, 2018, 8, 391.	1.2	21
83	Recent advances on sputtered films with Cu in ppm concentrations leading to an acceleration of the bacterial inactivation. Catalysis Today, 2020, 340, 347-362.	2.2	20
84	Nanostructured NaFeS2 as a cost-effective and robust electrocatalyst for hydrogen and oxygen evolution with reduced overpotentials. Chemical Engineering Journal, 2021, 426, 131315.	6.6	20
85	TiO ₂ and TiO ₂ -Doped Films Able to Kill Bacteria by Contact: New Evidence for the Dynamics of Bacterial Inactivation in the Dark and under Light Irradiation. International Journal of Photoenergy, 2014, 2014, 1-17.	1.4	19
86	Stable Photocatalytic Paints Prepared from Hybrid Core-Shell Fluorinated/Acrylic/TiO2 Waterborne Dispersions. Crystals, 2016, 6, 136.	1.0	19
87	First unambiguous evidence for distinct ionic and surface-contact effects during photocatalytic bacterial inactivation on Cu–Ag films: Kinetics, mechanism and energetics. Materials Today Chemistry, 2017, 6, 62-74.	1.7	19
88	Self-Sterilizing Sputtered Films for Applications in Hospital Facilities. Molecules, 2017, 22, 1074.	1.7	19
89	KCa2Mg2V3O12: A novel efficient rare-earth-free self-activated yellow-emitting phosphor. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112765.	2.0	19
90	New evidence for Cu-decorated binary-oxides mediating bacterial inactivation/mineralization in aerobic media. Colloids and Surfaces B: Biointerfaces, 2016, 144, 222-228.	2.5	18

#	Article	IF	CITATIONS
91	Accelerated self-cleaning by Cu promoted semiconductor binary-oxides under low intensity sunlight irradiation. Applied Catalysis B: Environmental, 2016, 180, 648-655.	10.8	18
92	Modeling and treatment optimization of pharmaceutically active compounds by the photo-Fenton process: The case of the antidepressant Venlafaxine. Journal of Environmental Chemical Engineering, 2017, 5, 818-828.	3.3	18
93	Extracellular bacterial inactivation proceeding without Cu-ion release: Drastic effects of the applied plasma energy on the performance of the Cu-polyester (PES) samples. Applied Catalysis B: Environmental, 2018, 239, 245-253.	10.8	18
94	Digitally Printed AgNPs Doped TiO2 on Commercial Porcelain-Grès Tiles: Synergistic Effects and Continuous Photocatalytic Antibacterial Activity. Surfaces, 2020, 3, 11-25.	1.0	18
95	Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. Environmental Science and Pollution Research, 2022, 29, 58405-58428.	2.7	18
96	Accelerated <i>Escherichia coli</i> inactivation in the dark on uniform copper flexible surfaces. Biointerphases, 2014, 9, 029012.	0.6	17
97	A New Perspective in the Use of FeOx-TiO2 Photocatalytic Films: Indole Degradation in the Absence of Fe-Leaching. Journal of Catalysis, 2016, 342, 184-192.	3.1	17
98	FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light. Scientific Reports, 2016, 6, 30113.	1.6	17
99	Enhancing solar disinfection of water in PET bottles by optimized in-situ formation of iron oxide films. From heterogeneous to homogeneous action modes with H2O2 vs. O2 – Part 1: Iron salts as oxide precursors. Chemical Engineering Journal, 2019, 358, 211-224.	6.6	17
100	Modeling of indoor air treatment using an innovative photocatalytic luminous textile: Reactor compactness and mass transfer enhancement. Chemical Engineering Journal, 2022, 430, 132636.	6.6	17
101	Antibacterial surfaces based on functionally graded photocatalytic Fe ₃ O ₄ @TiO ₂ core–shell nanoparticle/epoxy composites. RSC Advances, 2015, 5, 105416-105421.	1.7	16
102	Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light. Colloids and Surfaces B: Biointerfaces, 2017, 152, 152-158.	2.5	14
103	Methods for Synthesis of Hybrid Nanoparticles. , 2019, , 51-63.		14
104	Synthesis and photoluminescence properties of near-UV-excitable cyan-emitting Ca2YHf2Ga3O12:Ce3+ garnet phosphors. Journal of Luminescence, 2020, 227, 117544.	1.5	14
105	Evidence for TiON sputtered surfaces showing accelerated antibacterial activity under simulated solar irradiation. Solar Energy, 2013, 93, 55-62.	2.9	13
106	Oxygen enriched network-type carbon spheres for multipurpose water purification applications. Environmental Technology and Innovation, 2018, 12, 160-171.	3.0	13
107	Tandem Synthesis of High Yield MoS2 Nanosheets and Enzyme Peroxidase Mimicking Properties. Catalysts, 2020, 10, 1009.	1.6	13
108	Update on Interfacial Charge Transfer (IFTC) Processes on Films Inactivating Viruses/Bacteria under Visible Light: Mechanistic Considerations and Critical Issues. Catalysts, 2021, 11, 201.	1.6	13

#	Article	IF	CITATIONS
109	Light wavelength-dependent E. coli survival changes after simulated solar disinfection of secondary effluent. Photochemical and Photobiological Sciences, 2015, 14, 2238-2250.	1.6	12
110	Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility. Colloids and Surfaces B: Biointerfaces, 2016, 146, 687-691.	2.5	12
111	Evidence for differentiated ionic and surface contact effects driving bacterial inactivation by way of genetically modified bacteria. Chemical Communications, 2017, 53, 9093-9096.	2.2	12
112	Assessment of the correlation among antibiotic resistance, adherence to abiotic and biotic surfaces, invasion and cytotoxicity of Pseudomonas aeruginosa isolated from diseased gilthead sea bream. Colloids and Surfaces B: Biointerfaces, 2017, 158, 229-236.	2.5	12
113	Nano-sized iron oxides supported on polyester textile to remove fluoroquinolones in hospital wastewater. Environmental Science: Nano, 2020, 7, 2156-2165.	2.2	11
114	New Evidence for Ag-Sputtered Materials Inactivating Bacteria by Surface Contact without the Release of Ag Ions: End of a Long Controversy?. ACS Applied Materials & Interfaces, 2020, 12, 4998-5007.	4.0	10
115	Innovative Ti _{1–<i>x</i>} Nb _{<i>x</i>} N–Ag Films Inducing Bacterial Disinfection by Visible Light/Thermal Treatment. ACS Applied Materials & Interfaces, 2018, 10, 12021-12030.	4.0	9
116	Interaction of Vibrio to Biotic and Abiotic Surfaces: Relationship between Hydrophobicity, Cell Adherence, Biofilm Production, and Cytotoxic Activity. Surfaces, 2018, 1, 187-201.	1.0	9
117	Coupling electrocoagulation and solar photocatalysis for electro- and photo-catalytic removal of carmoisine by Ag/graphitic carbon nitride: Optimization by process modeling and kinetic studies. Journal of Molecular Liquids, 2021, 340, 116917.	2.3	9
118	Titanium-based photocatalytic coatings for bacterial disinfection: The shift from suspended powders to catalytic interfaces. Surfaces and Interfaces, 2022, 32, 102078.	1.5	9
119	Accelerated bacterial inactivation obtained by HIPIMS sputtering on low cost surfaces with concomitant reduction in the metal/semiconductor content. RSC Advances, 2013, 3, 13127.	1.7	8
120	Deciphering the Mechanisms of Bacterial Inactivation on HiPIMS Sputtered CuxO-FeOx-PET Surfaces: From Light Absorption to Catalytic Bacterial Death. ACS Applied Materials & Interfaces, 2019, 11, 45319-45329.	4.0	8
121	Novel Photocatalysts for Environmental and Energy Applications. Catalysts, 2022, 12, 458.	1.6	8
122	Grafted semiconductors on PE-films leading to bacterial inactivation: Synthesis, characterization and mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 231-237.	2.3	7
123	Physics, Electrochemistry, Photochemistry, and Photoelectrochemistry of Hybrid Nanoparticles. , 2019, , 95-123.		7
124	Effect of light and oxygen on repetitive bacterial inactivation on uniform, adhesive, robust and stable Cu-polyester surfaces. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	6
125	Enhancing solar disinfection of water in PET bottles by optimized in-situ formation of iron oxide films. From heterogeneous to homogeneous action modes with H2O2 vs. O2 – Part 2: Direct use of (natural) iron oxides. Chemical Engineering Journal, 2019, 360, 1051-1062.	6.6	6
126	Biological responses at the interface of Ti-doped diamond-like carbon surfaces for indoor environment application. Environmental Science and Pollution Research, 2020, 27, 31120-31129.	2.7	6

SAMI RTIMI

#	Article	IF	CITATIONS
127	Accelerating the Design of Photocatalytic Surfaces for Antimicrobial Application: Machine Learning Based on a Sparse Dataset. Catalysts, 2021, 11, 1001.	1.6	6
128	Nanomaterials-based coatings: an introduction. , 2019, , 1-7.		5
129	Sputtered Cu-polyethylene films inducing bacteria inactivation in the dark and under low intensity sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 163-168.	2.0	3
130	Investigation and modeling of odors release from membrane holes on daily overlay in a landfill and its impact on landfill odor control. Environmental Science and Pollution Research, 2021, 28, 4443-4451.	2.7	3
131	Advances in Antimicrobial Coatings. Coatings, 2021, 11, 148.	1.2	3
132	Environmentally mild self-cleaning processes on textile surfaces under daylight irradiation. , 2016, , 35-54.		2
133	Innovative self-sterilizing transparent Fe–phosphate polyethylene films under visible light. RSC Advances, 2016, 6, 77066-77074.	1.7	2
134	Monitoring the energy of the metal ion-content plasma-assisted deposition and its implication for bacterial inactivation. Applied Surface Science, 2019, 467-468, 749-752.	3.1	2
135	Photo-induced environmental remediation, biomedical imaging, and microbial inactivation by Mn-doped semiconductors: critical issues. Current Opinion in Chemical Engineering, 2021, 34, 100731.	3.8	2
136	Uniform, adhesive, and low cytotoxic films accelerating bacterial reduction in the dark and under visible light. , 2016, , 225-260.		1
137	Architectured Cu–TNTZ Bilayered Coatings Showing Bacterial Inactivation under Indoor Light and Controllable Copper Release: Effect of the Microstructure on Copper Diffusion. Coatings, 2020, 10, 574.	1.2	1
138	Recent advances in nano-bio-interactions: Editorial. Colloids and Surfaces B: Biointerfaces, 2019, 173, 906.	2.5	0
139	Iron-coated polymer films with high antibacterial activity under indoor and outdoor light, prepared by different facile pre-treatment and deposition methods. Applied Catalysis B: Environmental, 2019, 243, 161-174.	10.8	0
140	Photo-plasma catalytic hybrid systems for air treatment: reactor design from laboratory to industrial scales. , 2020, , 373-389.		0