## Dirk Schulze-Makuch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3316887/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Longitudinal dispersivity data and implications for scaling behavior. Ground Water, 2005, 43, 443-456.                                                                                  | 1.3  | 264       |
| 2  | Scale Dependency of Hydraulic Conductivity in Heterogeneous Media. Ground Water, 1999, 37, 904-919.                                                                                     | 1.3  | 212       |
| 3  | Transitory microbial habitat in the hyperarid Atacama Desert. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2670-2675.                    | 7.1  | 172       |
| 4  | A Sulfur-Based Survival Strategy for Putative Phototrophic Life in the Venusian Atmosphere.<br>Astrobiology, 2004, 4, 11-18.                                                            | 3.0  | 149       |
| 5  | Exploration of hydrothermal targets on Mars. Icarus, 2007, 189, 308-324.                                                                                                                | 2.5  | 140       |
| 6  | Water droplets in oil are microhabitats for microbial life. Science, 2014, 345, 673-676.                                                                                                | 12.6 | 118       |
| 7  | A Two-Tiered Approach to Assessing the Habitability of Exoplanets. Astrobiology, 2011, 11, 1041-1052.                                                                                   | 3.0  | 117       |
| 8  | Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiology, 2019, 19, 145-157.                                                               | 3.0  | 111       |
| 9  | GRS evidence and the possibility of paleooceans on Mars. Planetary and Space Science, 2009, 57, 664-684.                                                                                | 1.7  | 107       |
| 10 | Biologically Enhanced Energy and Carbon Cycling on Titan?. Astrobiology, 2005, 5, 560-567.                                                                                              | 3.0  | 106       |
| 11 | The prospect of alien life in exotic forms on other worlds. Die Naturwissenschaften, 2006, 93, 155-172.                                                                                 | 1.6  | 105       |
| 12 | Reassessing the Possibility of Life on Venus: Proposal for an Astrobiology Mission. Astrobiology, 2002, 2, 197-202.                                                                     | 3.0  | 104       |
| 13 | Recent geological and hydrological activity on Mars: The Tharsis/Elysium corridor. Planetary and<br>Space Science, 2008, 56, 985-1013.                                                  | 1.7  | 92        |
| 14 | Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment.<br>Life, 2014, 4, 331-340.                                                      | 2.4  | 88        |
| 15 | The Search for Alien Life in Our Solar System: Strategies and Priorities. Astrobiology, 2009, 9, 335-343.                                                                               | 3.0  | 87        |
| 16 | Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planetary and Space Science, 2014, 98, 182-190.                                                 | 1.7  | 82        |
| 17 | Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks. Hydrogeology Journal, 1998, 6, 204-215.                   | 2.1  | 78        |
| 18 | Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planetary and Space Science, 2012, 60, 356-362. | 1.7  | 77        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Noachian and more recent phyllosilicates in impact craters on Mars. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12095-12100.                                                     | 7.1 | 73        |
| 20 | Microbial Survival Rates of Escherichia coli and Deinococcus radiodurans Under Low Temperature,<br>Low Pressure, and UV-Irradiation Conditions, and Their Relevance to Possible Martian Life.<br>Astrobiology, 2006, 6, 332-347. | 3.0 | 68        |
| 21 | Energy Cycling and Hypothetical Organisms in Europa's Ocean. Astrobiology, 2002, 2, 105-121.                                                                                                                                     | 3.0 | 64        |
| 22 | The Last Possible Outposts for Life on Mars. Astrobiology, 2016, 16, 159-168.                                                                                                                                                    | 3.0 | 63        |
| 23 | Searching for Life on Mars Before It Is Too Late. Astrobiology, 2017, 17, 962-970.                                                                                                                                               | 3.0 | 61        |
| 24 | A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted.<br>International Journal of Astrobiology, 2007, 6, 147-152.                                                                          | 1.6 | 60        |
| 25 | Assessing the Plausibility of Life on Other Worlds. Astrobiology, 2001, 1, 143-160.                                                                                                                                              | 3.0 | 49        |
| 26 | Microbial Life in a Liquid Asphalt Desert. Astrobiology, 2011, 11, 241-258.                                                                                                                                                      | 3.0 | 49        |
| 27 | Scenarios for the evolution of life on Mars. Journal of Geophysical Research, 2005, 110, .                                                                                                                                       | 3.3 | 48        |
| 28 | Assessing the Possibility of Biological Complexity on Other Worlds, with an Estimate of the Occurrence of Complex Life in the Milky Way Galaxy. Challenges, 2014, 5, 159-174.                                                    | 1.7 | 48        |
| 29 | Limnology of Pavilion Lake, B. C., Canada Characterization of a microbialite forming environment.<br>Fundamental and Applied Limnology, 2009, 173, 329-351.                                                                      | 0.7 | 46        |
| 30 | Subsurface formation of oxidants on Mars and implications for the preservation of organic biosignatures. Earth and Planetary Science Letters, 2008, 272, 456-463.                                                                | 4.4 | 45        |
| 31 | Venus, Mars, and the Ices on Mercury and the Moon: Astrobiological Implications and Proposed<br>Mission Designs. Astrobiology, 2005, 5, 778-795.                                                                                 | 3.0 | 44        |
| 32 | Deliquescenceâ€induced wetting and RSLâ€like darkening of a Mars analogue soil containing various<br>perchlorate and chloride salts. Geophysical Research Letters, 2016, 43, 4880-4884.                                          | 4.0 | 41        |
| 33 | Locating Potential Biosignatures on Europa from Surface Geology Observations. Astrobiology, 2003, 3, 851-861.                                                                                                                    | 3.0 | 39        |
| 34 | Formation and disruption of aquifers in southwestern Chryse Planitia, Mars. Icarus, 2007, 191, 545-567.                                                                                                                          | 2.5 | 38        |
| 35 | Venus, an Astrobiology Target. Astrobiology, 2021, 21, 1163-1185.                                                                                                                                                                | 3.0 | 38        |
| 36 | The case for life on Mars. International Journal of Astrobiology, 2008, 7, 117-141.                                                                                                                                              | 1.6 | 37        |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Evidence for Amazonian acidic liquid water on Mars—A reinterpretation of MER mission results.<br>Planetary and Space Science, 2009, 57, 276-287.                        | 1.7 | 36        |
| 38 | The Effect of Critical pH on Virus Fate and Transport in Saturated Porous Medium. Ground Water, 2003, 41, 701-708.                                                      | 1.3 | 35        |
| 39 | Cosmic Biology. , 2011, , .                                                                                                                                             |     | 35        |
| 40 | A cold hydrological system in Gale crater, Mars. Planetary and Space Science, 2014, 93-94, 101-118.                                                                     | 1.7 | 34        |
| 41 | Strategy for Modeling Putative Multilevel Ecosystems on Europa. Astrobiology, 2003, 3, 813-821.                                                                         | 3.0 | 33        |
| 42 | Tier-Scalable Reconnaissance Missions For The Autonomous Exploration Of Planetary Bodies. , 2007, , .                                                                   |     | 32        |
| 43 | The Biological Oxidant and Life Detection (BOLD) mission: A proposal for a mission to Mars. Planetary and Space Science, 2012, 67, 57-69.                               | 1.7 | 32        |
| 44 | Enhanced Microbial Survivability in Subzero Brines. Astrobiology, 2018, 18, 1171-1180.                                                                                  | 3.0 | 32        |
| 45 | New evidence for a magmatic influence on the origin of Valles Marineris, Mars. Journal of<br>Volcanology and Geothermal Research, 2009, 185, 12-27.                     | 2.1 | 31        |
| 46 | New Priorities in the Robotic Exploration of Mars: The Case for <i>In Situ</i> Search for Extant Life.<br>Astrobiology, 2010, 10, 705-710.                              | 3.0 | 31        |
| 47 | The Development of an Effective Bacterial Single-Cell Lysis Method Suitable for Whole Genome<br>Amplification in Microfluidic Platforms. Micromachines, 2018, 9, 367.   | 2.9 | 31        |
| 48 | Bacterial Growth in Chloride and Perchlorate Brines: Halotolerances and Salt Stress Responses of <i>Planococcus halocryophilus</i> . Astrobiology, 2019, 19, 1377-1387. | 3.0 | 30        |
| 49 | Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments.<br>Scientific Reports, 2020, 10, 6.                                          | 3.3 | 30        |
| 50 | Thermal Energy and the Origin of Life. Origins of Life and Evolution of Biospheres, 2006, 36, 177-189.                                                                  | 1.9 | 28        |
| 51 | Drastic environmental change and its effects on a planetary biosphere. Icarus, 2013, 225, 775-780.                                                                      | 2.5 | 28        |
| 52 | Search parameters for the remote detection of extraterrestrial life. Planetary and Space Science, 2002, 50, 675-683.                                                    | 1.7 | 27        |
| 53 | Diverse Viruses Carrying Genes for Microbial Extremotolerance in the Atacama Desert Hyperarid Soil.<br>MSystems, 2021, 6, .                                             | 3.8 | 27        |
| 54 | Method developed for extrapolating scale behavior. Eos, 1997, 78, 3.                                                                                                    | 0.1 | 26        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A New Record for Microbial Perchlorate Tolerance: Fungal Growth in NaClO4 Brines and its<br>Implications for Putative Life on Mars. Life, 2020, 10, 53.                                                              | 2.4  | 26        |
| 56 | The overprotection of Mars. Nature Geoscience, 2013, 6, 510-511.                                                                                                                                                     | 12.9 | 25        |
| 57 | Energy Sources and Life. , 2018, , 75-100.                                                                                                                                                                           |      | 25        |
| 58 | Field Evaluation of the Effectiveness of Surfactant Modified Zeolite and Iron-Oxide-Coated Sand for<br>Removing Viruses and Bacteria from Ground Water. Ground Water Monitoring and Remediation, 2003,<br>23, 68-74. | 0.8  | 24        |
| 59 | Geological and hydrological histories of the Argyre province, Mars. Icarus, 2015, 253, 66-98.                                                                                                                        | 2.5  | 24        |
| 60 | The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life, 2016, 6, 25.                                                                                                           | 2.4  | 24        |
| 61 | Effects of Oxygen-Containing Salts on the Detection of Organic Biomarkers on Mars and in<br>Terrestrial Analog Soils. Astrobiology, 2019, 19, 711-721.                                                               | 3.0  | 24        |
| 62 | Extraterrestrial hydrogeology. Hydrogeology Journal, 2005, 13, 51-68.                                                                                                                                                | 2.1  | 23        |
| 63 | The search for life beyond Earth through fuzzy expert systems. Planetary and Space Science, 2008, 56, 448-472.                                                                                                       | 1.7  | 23        |
| 64 | The Adaptability of Life on Earth and the Diversity of Planetary Habitats. Frontiers in Microbiology, 2017, 8, 2011.                                                                                                 | 3.5  | 23        |
| 65 | Life in the Universe. , 2018, , .                                                                                                                                                                                    |      | 23        |
| 66 | Prime candidate sites for astrobiological exploration through the hydrogeological history of Mars.<br>Planetary and Space Science, 2005, 53, 1355-1375.                                                              | 1.7  | 22        |
| 67 | Was There an Early Habitability Window for Earth's Moon?. Astrobiology, 2018, 18, 985-988.                                                                                                                           | 3.0  | 22        |
| 68 | Surfactant-modified zeolite can protect drinking water wells from viruses and bacteria. Eos, 2002, 83, 193-201.                                                                                                      | 0.1  | 20        |
| 69 | Correlation between microbiological and chemical parameters of some hydrothermal springs in New<br>Mexico, USA. Journal of Hydrology, 2003, 280, 272-284.                                                            | 5.4  | 20        |
| 70 | Thiophenes on Mars: Biotic or Abiotic Origin?. Astrobiology, 2020, 20, 552-561.                                                                                                                                      | 3.0  | 20        |
| 71 | Adaptations to environmental extremes by multicellular organisms. International Journal of Astrobiology, 2007, 6, 199-215.                                                                                           | 1.6  | 19        |
| 72 | Fluorine-Rich Planetary Environments as Possible Habitats for Life. Life, 2014, 4, 374-385.                                                                                                                          | 2.4  | 19        |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Microbial Hotspots in Lithic Microhabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert. Microorganisms, 2021, 9, 1038.                                            | 3.6  | 19        |
| 74 | A roadmap for planetary caves science and exploration. Nature Astronomy, 2021, 5, 524-525.                                                                                                   | 10.1 | 19        |
| 75 | Nearly Forty Years after Viking: Are We Ready for a New Life-Detection Mission?. Astrobiology, 2015, 15, 413-419.                                                                            | 3.0  | 18        |
| 76 | Leave no stone unturned: individually adapted xerotolerant Thaumarchaeota sheltered below the boulders of the Atacama Desert hyperarid core. Microbiome, 2021, 9, 234.                       | 11.1 | 18        |
| 77 | Effects of pH and Geological Medium on Bacteriophage MS2 Transport in a Model Aquifer.<br>Geomicrobiology Journal, 2003, 20, 73-84.                                                          | 2.0  | 17        |
| 78 | Meteorites at Meridiani Planum provide evidence for significant amounts of surface and nearâ€surface water on early Mars. Meteoritics and Planetary Science, 2011, 46, 1832-1841.            | 1.6  | 17        |
| 79 | The Astrobiology of Alien Worlds: Known and Unknown Forms of Life. Universe, 2020, 6, 130.                                                                                                   | 2.5  | 17        |
| 80 | Locally Targeted Ecosynthesis: A Proactive <i>in situ</i> Search for Extant Life on Other Worlds.<br>Astrobiology, 2013, 13, 674-678.                                                        | 3.0  | 16        |
| 81 | In Search for a Planet Better than Earth: Top Contenders for a Superhabitable World. Astrobiology, 2020, 20, 1394-1404.                                                                      | 3.0  | 16        |
| 82 | Sorption heat engines: Simple inanimate negative entropy generators. Physica A: Statistical Mechanics and Its Applications, 2006, 362, 369-381.                                              | 2.6  | 15        |
| 83 | Another Earth 2.0? Not So Fast. Astrobiology, 2016, 16, 817-821.                                                                                                                             | 3.0  | 15        |
| 84 | The Microbial Enhanced Oil Recovery (MEOR) potential of Halanaerobiales under dynamic conditions in different porous media. Journal of Petroleum Science and Engineering, 2021, 196, 107578. | 4.2  | 15        |
| 85 | Microbiological and chemical characterization of hydrothermal fluids at Tortugas Mountain<br>Geothermal Area, southern New Mexico, USA. Hydrogeology Journal, 2000, 8, 295-309.              | 2.1  | 14        |
| 86 | Genetic code: Lucky chance or fundamental law of nature?. Physics of Life Reviews, 2004, 1, 202-229.                                                                                         | 2.8  | 14        |
| 87 | The Cosmic Zoo. , 2017, , .                                                                                                                                                                  |      | 14        |
| 88 | The First Cell and the Origin of Life Challenge. , 2017, , 35-52.                                                                                                                            |      | 14        |
| 89 | Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. Journal of Molecular Evolution, 2015, 81, 34-53.              | 1.8  | 13        |
| 90 | Habitability Models for Astrobiology. Astrobiology, 2021, 21, 1017-1027.                                                                                                                     | 3.0  | 13        |

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Automated Global Feature Analyzer - A Driver for Tier-Scalable Reconnaissance. Aerospace Conference<br>Proceedings IEEE, 2008, , .                                      | 0.0 | 12        |
| 92  | A formation mechanism for hematite-rich spherules on Mars. Planetary and Space Science, 2010, 58, 401-410.                                                              | 1.7 | 12        |
| 93  | New types of boulder accumulations in the hyper-arid Atacama Desert. Geomorphology, 2020, 350, 106897.                                                                  | 2.6 | 12        |
| 94  | Applications of particle-tracking techniques to bank infiltration: a case study from El Paso, Texas,<br>USA. Environmental Geology, 2008, 55, 505-515.                  | 1.2 | 11        |
| 95  | Planetary Protection and the astrobiological exploration of Mars: Proactive steps in moving forward. Advances in Space Research, 2019, 63, 1491-1497.                   | 2.6 | 11        |
| 96  | New type of sand wedge polygons in the salt cemented soils of the hyper-arid Atacama Desert.<br>Geomorphology, 2021, 373, 107481.                                       | 2.6 | 11        |
| 97  | Low frequency electromagnetic waves as a supplemental energy source to sustain microbial growth?.<br>Die Naturwissenschaften, 2005, 92, 115-120.                        | 1.6 | 10        |
| 98  | Pavilion Lake Microbialites: Morphological, Molecular and Biochemical Evidence for a Cold-Water<br>Transition to Colonial Aggregates. Life, 2013, 3, 21-37.             | 2.4 | 10        |
| 99  | Microbial and chemical characterization of a groundwater flow system in an intermontane basin of southern New Mexico, USA. Hydrogeology Journal, 2003, 11, 401-412.     | 2.1 | 9         |
| 100 | Testing the H2O2-H2O Hypothesis for Life on Mars with the TEGA Instrument on the Phoenix Lander.<br>Astrobiology, 2008, 8, 205-214.                                     | 3.0 | 9         |
| 101 | How Many Biochemistries Are Available To Build a Cell?. ChemBioChem, 2015, 16, 2137-2139.                                                                               | 2.6 | 9         |
| 102 | The Physical, Chemical and Physiological Limits of Life. Life, 2015, 5, 1472-1486.                                                                                      | 2.4 | 9         |
| 103 | Autonomous exploration of planetary lava tubes using a multi-rover framework. , 2015, , .                                                                               |     | 9         |
| 104 | Inhibition of microbial souring with molybdate and its application under reservoir conditions.<br>International Biodeterioration and Biodegradation, 2021, 157, 105158. | 3.9 | 9         |
| 105 | Influence of surface mineralogy on the activity of Halanaerobium sp. during microbial enhanced oil recovery (MEOR). Fuel, 2021, 290, 119973.                            | 6.4 | 9         |
| 106 | Long-lived volcanism within Argyre basin, Mars. Icarus, 2017, 293, 8-26.                                                                                                | 2.5 | 8         |
| 107 | Is Searching for Martian Life a Priority for the Mars Community?. Astrobiology, 2018, 18, 101-107.                                                                      | 3.0 | 8         |
| 108 | The Naked Mole-Rat: An Unusual Organism with an Unexpected Latent Potential for Increased<br>Intelligence?. Life, 2019, 9, 76.                                          | 2.4 | 8         |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Geochemical proxies for water-soil interactions in the hyperarid Atacama Desert, Chile. Catena, 2021, 206, 105531.                                                                                             | 5.0  | 8         |
| 110 | Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines. Life, 2021, 11, 1194.                       | 2.4  | 8         |
| 111 | A new hypothesis for the origin and redistribution of sulfates in the equatorial region of western<br>Mars. Geophysical Research Letters, 2008, 35, .                                                          | 4.0  | 7         |
| 112 | Investigation of water signatures at gully-exposed sites on Mars by hyperspectral image analysis.<br>Planetary and Space Science, 2009, 57, 93-104.                                                            | 1.7  | 7         |
| 113 | Extremophiles on Alien Worlds: What Types of Organismic Adaptations are Feasible on Other<br>Planetary Bodies. Cellular Origin and Life in Extreme Habitats, 2013, , 253-265.                                  | 0.3  | 7         |
| 114 | Planetary Imaging in Powers of Ten: A Multiscale, Multipurpose Astrobiological Imager. Astrobiology, 2013, 13, 1005-1010.                                                                                      | 3.0  | 7         |
| 115 | Nutrient and population dynamics in a subglacial reservoir: a simulation case study of the Blood Falls ecosystem with implications for astrobiology. International Journal of Astrobiology, 2013, 12, 304-311. | 1.6  | 7         |
| 116 | Amino acid synthesis in Europa's subsurface environment. International Journal of Astrobiology, 2008, 7, 193-203.                                                                                              | 1.6  | 6         |
| 117 | Possibilities for the detection of hydrogen peroxide–water-based life on Mars by the Phoenix Lander.<br>Planetary and Space Science, 2009, 57, 449-453.                                                        | 1.7  | 6         |
| 118 | The power of social structure: how we became an intelligent lineage. International Journal of Astrobiology, 2011, 10, 15-23.                                                                                   | 1.6  | 6         |
| 119 | Glacial paleoenvironments on Mars revealed by the paucity of hydrated silicates in the Noachian crust of the Northern Lowlands. Planetary and Space Science, 2012, 70, 126-133.                                | 1.7  | 6         |
| 120 | Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan. Life, 2013, 3, 538-549.                                                                                                              | 2.4  | 6         |
| 121 | Time to consider search strategies for complex life on exoplanets. Nature Astronomy, 2018, 2, 432-433.                                                                                                         | 10.1 | 6         |
| 122 | Machine Learning Algorithms Applied to Identify Microbial Species by Their Motility. Life, 2021, 11, 44.                                                                                                       | 2.4  | 6         |
| 123 | The Case (or Not) for Life in the Venusian Clouds. Life, 2021, 11, 255.                                                                                                                                        | 2.4  | 6         |
| 124 | Whole genome sequencing of cyanobacterium Nostoc sp. CCCryo 231-06 using microfluidic single cell technology. IScience, 2022, 25, 104291.                                                                      | 4.1  | 6         |
| 125 | Functional Traits Co-Occurring with Mobile Genetic Elements in the Microbiome of the Atacama Desert. Diversity, 2019, 11, 205.                                                                                 | 1.7  | 5         |
| 126 | A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water. Science of the Total Environment, 2020, 707, 136087.             | 8.0  | 5         |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Physicochemical Salt Solution Parameters Limit the Survival of Planococcus halocryophilus in Martian Cryobrines. Frontiers in Microbiology, 2020, 11, 1284.                      | 3.5 | 5         |
| 128 | Introduction to the Special Paper Collection: Methodologies and Techniques for Detecting Extraterrestrial (Microbial) Life. Astrobiology, 2003, 3, 487-488.                      | 3.0 | 4         |
| 129 | The Solar Wind Power Satellite as an alternative to a traditional Dyson Sphere and its implications for remote detection. International Journal of Astrobiology, 2010, 9, 89-99. | 1.6 | 4         |
| 130 | The landscape of life. , 2015, , 81-94.                                                                                                                                          |     | 4         |
| 131 | The Argyre Region as a Prime Target for <i>in situ</i> Astrobiological Exploration of Mars.<br>Astrobiology, 2016, 16, 143-158.                                                  | 3.0 | 4         |
| 132 | Pre-conditions for Complex Life. , 2017, , 13-32.                                                                                                                                |     | 4         |
| 133 | Life and the Need for a Solvent. , 2018, , 123-147.                                                                                                                              |     | 3         |
| 134 | Suspended Animation. , 2011, , 153-172.                                                                                                                                          |     | 3         |
| 135 | Application of Raman Spectroscopy as In Situ Technology for the Search for Life. Cellular Origin and<br>Life in Extreme Habitats, 2013, , 331-345.                               | 0.3 | 3         |
| 136 | The Biological Oxidant and Life Detection (BOLD) mission: an outline for a new mission to Mars.<br>Proceedings of SPIE, 2007, , .                                                | 0.8 | 2         |
| 137 | Session 3. Approaches and Technologies to Detect Life on Mars. Astrobiology, 2008, 8, 302-305.                                                                                   | 3.0 | 2         |
| 138 | The immune system as key to cancer treatment: Triggering its activity with microbial agents. Bioscience Hypotheses, 2009, 2, 388-392.                                            | 0.2 | 2         |
| 139 | Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans. Life, 2016, 6, 22.                                               | 2.4 | 2         |
| 140 | Evaluating the Microbial Habitability of Rogue Planets and Proposing Speculative Scenarios on How<br>They Might Act as Vectors for Panspermia. Life, 2021, 11, 833.              | 2.4 | 2         |
| 141 | Organic Molecules in Lunar Ice: A Window to the Early Evolution of Life on Earth. Cellular Origin and Life in Extreme Habitats, 2013, , 115-125.                                 | 0.3 | 2         |
| 142 | Astrobiology and the Search for Life in the Universe. , 0, , 349-358.                                                                                                            |     | 2         |
| 143 | Building Blocks of Life. , 2018, , 101-121.                                                                                                                                      |     | 2         |
| 144 | Searching for Life Beyond Our Planet: Are We There Yet?. Eos, 2010, 91, 280-280.                                                                                                 | 0.1 | 1         |

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | A Dynamic Scheme to Assess Habitability of Exoplanets. Cellular Origin and Life in Extreme Habitats, 2012, , 307-321.                                                   | 0.3 | 1         |
| 146 | The First Multicellular Organisms. , 2017, , 107-120.                                                                                                                   |     | 1         |
| 147 | The ALH84001 Case for Life on Mars. Cellular Origin and Life in Extreme Habitats, 2009, , 471-489.                                                                      | 0.3 | 1         |
| 148 | Survey of the Outline of an Early Roman Marching-camp in Germany by Rammner's Current Line<br>Pertubation Method. Journal of Archaeological Science, 1996, 23, 883-887. | 2.4 | 0         |
| 149 | The hydrogen peroxide-water hypothesis for life on Mars and the problem of detection. Proceedings of SPIE, 2007, , .                                                    | 0.8 | 0         |
| 150 | Frozen Desert. , 2011, , 105-135.                                                                                                                                       |     | 0         |
| 151 | Rare Earths and Life Unseen. , 2011, , 1-14.                                                                                                                            |     | 0         |
| 152 | A question of Curiosity. New Scientist, 2016, 231, 18-19.                                                                                                               | 0.0 | 0         |
| 153 | Endosymbiosis and the First Eukaryotes. , 2017, , 77-94.                                                                                                                |     | 0         |
| 154 | How to Test the Cosmic Zoo Hypothesis. , 2017, , 181-200.                                                                                                               |     | 0         |
| 155 | Life Detection: Past and Present. , 2018, , 183-202.                                                                                                                    |     | 0         |
| 156 | Exoplanets and Exomoons. , 2018, , 229-246.                                                                                                                             |     | 0         |
| 157 | The Future and Fate of Living Systems. , 2018, , 255-264.                                                                                                               |     | 0         |
| 158 | The Search for Extraterrestrial Intelligent Life. , 2018, , 265-273.                                                                                                    |     | 0         |
| 159 | Optimizing Space Exploration. , 2018, , 275-286.                                                                                                                        |     | 0         |
| 160 | Signatures of Life. , 2018, , 165-181.                                                                                                                                  |     | 0         |
| 161 | Lessons from the History of Life on Earth. , 2018, , 51-73.                                                                                                             |     | 0         |
| 162 | Review of David Deamer's Book Assembling Life: How Can Life Begin on Earth and Other Habitable<br>Planets?. Astrobiology, 2019, 19, 1540-1541.                          | 3.0 | 0         |

| #   | Article                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Evolution of default genetic control mechanisms. PLoS ONE, 2021, 16, e0251568.                 | 2.5 | Ο         |
| 164 | Petrolakes. , 2011, , 225-251.                                                                 |     | 0         |
| 165 | Deep and Dark. , 2011, , 173-200.                                                              |     | 0         |
| 166 | Astrobiology—a melting pot of open scientific questions. Science and Fiction, 2014, , 225-236. | 0.0 | 0         |
| 167 | Alien Encounter. Science and Fiction, 2014, , .                                                | 0.0 | 0         |
| 168 | Intelligence, a New Concept?. , 2017, , 137-162.                                               |     | 0         |
| 169 | Technologically Advanced Intelligence. , 2017, , 163-177.                                      |     | 0         |
| 170 | The Cosmic Zoo Hypothesis and the Evolutionary Tool Set. , 2017, , 3-12.                       |     | 0         |
| 171 | Habitats of Life. , 2018, , 149-164.                                                           |     | 0         |
| 172 | Intelligenz – ein neues Konzept?. , 2019, , 163-192.                                           |     | 0         |
| 173 | Wie erkennen wir ein lebendiges Universum?. , 2019, , 213-236.                                 |     | 0         |
| 174 | Die erste Zelle und das Problem vom Ursprung des Lebens. , 2019, , 41-62.                      |     | 0         |
| 175 | Die ersten Vielzeller. , 2019, , 127-142.                                                      |     | 0         |
| 176 | Die Hypothese vom lebendigen Universum und der Werkzeugkasten der Evolution. , 2019, , 3-13.   |     | 0         |
| 177 | Technologisch fortgeschrittene Intelligenz. , 2019, , 193-209.                                 |     | 0         |
| 178 | Voraussetzungen für komplexes Leben. , 2019, , 15-38.                                          |     | 0         |
| 179 | Endosymbiose und die ersten Eukaryoten. , 2019, , 93-112.                                      |     | 0         |