
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3315680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infections with highly pathogenic avian influenza A virus (HPAIV) H5N8 in harbor seals at the German North Sea coast, 2021. Emerging Microbes and Infections, 2022, 11, 725-729.	6.5	34
2	Immunogenicity after second and third mRNA-1273 vaccination doses in patients receiving chemotherapy, immunotherapy, or both for solid tumours. Lancet Oncology, The, 2022, 23, 833-835.	10.7	18
3	COVID-19 vaccination: the VOICE for patients with cancer. Nature Medicine, 2021, 27, 568-569.	30.7	53
4	Immunity to TBEV Related Flaviviruses with Reduced Pathogenicity Protects Mice from Disease but Not from TBEV Entry into the CNS. Vaccines, 2021, 9, 196.	4.4	6
5	Reverse genetics systems for contemporary isolates of respiratory syncytial virus enable rapid evaluation of antibody escape mutants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
6	Aging and Options to Halt Declining Immunity to Virus Infections. Frontiers in Immunology, 2021, 12, 681449.	4.8	26
7	Lineage-specific protection and immune imprinting shape the age distributions of influenza B cases. Nature Communications, 2021, 12, 4313.	12.8	17
8	Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLoS ONE, 2021, 16, e0255335.	2.5	48
9	Influenza Vaccines: Successes and Continuing Challenges. Journal of Infectious Diseases, 2021, 224, S405-S419.	4.0	24
10	mRNA-1273 COVID-19 vaccination in patients receiving chemotherapy, immunotherapy, or chemoimmunotherapy for solid tumours: a prospective, multicentre, non-inferiority trial. Lancet Oncology, The, 2021, 22, 1681-1691.	10.7	118
11	Effect of daratumumab on normal plasma cells, polyclonal immunoglobulin levels, and vaccination responses in extensively pre-treated multiple myeloma patients. Haematologica, 2020, 105, e302-e306.	3.5	53
12	Analysis of the vaccine-induced influenza B virus hemagglutinin-specific antibody dependent cellular cytotoxicity response. Virus Research, 2020, 277, 197839.	2.2	6
13	HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. PLoS Pathogens, 2020, 16, e1008714.	4.7	5
14	Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines, 2020, 8, 451.	4.4	48
15	Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63. Scientific Reports, 2020, 10, 21447.	3.3	70
16	Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design?. Pathogens, 2020, 9, 470.	2.8	10
17	Specific memory B cell response in humans upon infection with highly pathogenic H7N7 avian influenza virus. Scientific Reports, 2020, 10, 3152.	3.3	5
18	HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. , 2020, 16, e1008714.		0

#	Article	IF	CITATIONS
19	HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. , 2020, 16, e1008714.		0
20	HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. , 2020, 16, e1008714.		0
21	HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. , 2020, 16, e1008714.		0
22	T cells and ILC2s are major effector cells in influenzaâ€induced exacerbation of allergic airway inflammation in mice. European Journal of Immunology, 2019, 49, 144-156.	2.9	43
23	Enhanced Antiviral Activity of Human Surfactant Protein D by Site-Specific Engineering of the Carbohydrate Recognition Domain. Frontiers in Immunology, 2019, 10, 2476.	4.8	10
24	Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. Journal of Clinical Virology, 2019, 119, 44-52.	3.1	107
25	Response Modifiers: Tweaking the Immune Response Against Influenza A Virus. Frontiers in Immunology, 2019, 10, 809.	4.8	13
26	Divergent <scp>SATB</scp> 1 expression across human life span and tissue compartments. Immunology and Cell Biology, 2019, 97, 498-511.	2.3	20
27	Influenza Virus Infections and Cellular Kinases. Viruses, 2019, 11, 171.	3.3	93
28	Recombinant influenza A viruses as vaccine vectors. Expert Review of Vaccines, 2019, 18, 379-392.	4.4	17
29	Broadly protective influenza vaccines: design and production platforms. Current Opinion in Virology, 2019, 34, 1-9.	5.4	25
30	Epistatic interactions can moderate the antigenic effect of substitutions in haemagglutinin of influenza H3N2 virus. Journal of General Virology, 2019, 100, 773-777.	2.9	13
31	Induction of Cross-Clade Antibody and T-Cell Responses by a Modified Vaccinia Virus Ankara–Based Influenza A(H5N1) Vaccine in a Randomized Phase 1/2a Clinical Trial. Journal of Infectious Diseases, 2018, 218, 614-623.	4.0	25
32	Matrix-Mâ"¢ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice. Immunologic Research, 2018, 66, 224-233.	2.9	58
33	H1N1pdm09 Influenza Virus and Its Descendants Lack Extra-epitopic Amino Acid Residues Associated With Reduced Recognition by M158-66-Specific CD8+ T Cells. Journal of Infectious Diseases, 2018, 218, 581-585.	4.0	6
34	Primary Human Influenza B Virus Infection Induces Cross-Lineage Hemagglutinin Stalk–Specific Antibodies Mediating Antibody-Dependent Cellular Cytoxicity. Journal of Infectious Diseases, 2018, 217, 3-11.	4.0	31
35	Influenza vaccines: â€~tailor-made' or â€~one fits all'. Current Opinion in Immunology, 2018, 53, 102-110.	5.5	13
36	Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines. Scientific Reports, 2018, 8, 6474.	3.3	18

GUUS F RIMMELZWAAN

#	Article	IF	CITATIONS
37	Variation at Extra-epitopic Amino Acid Residues Influences Suppression of Influenza Virus Replication by M1 58-66 Epitope-Specific CD8 + T Lymphocytes. Journal of Virology, 2018, 92, .	3.4	5
38	ViroSpot microneutralization assay for antigenic characterization of human influenza viruses. Vaccine, 2017, 35, 46-52.	3.8	50
39	Distinct and Overlapping Functions of TEC Kinase and BTK in B Cell Receptor Signaling. Journal of Immunology, 2017, 198, 3058-3068.	0.8	14
40	Editorial overview: Viral immunology: Dealing with bad news. Current Opinion in Virology, 2017, 22, viii-x.	5.4	0
41	Microarray profile of the humoral immune response to influenza vaccination in breast cancer patients treated with chemotherapy. Vaccine, 2017, 35, 1299-1305.	3.8	7
42	Influenza virus-specific antibody dependent cellular cytoxicity induced by vaccination or natural infection. Vaccine, 2017, 35, 238-247.	3.8	49
43	Human CD8 ⁺ T Cells Damage Noninfected Epithelial Cells during Influenza Virus Infection <i>In Vitro</i> . American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 536-546.	2.9	40
44	Influenza vaccination in adult patients with solid tumours treated with chemotherapy. European Journal of Cancer, 2017, 76, 134-143.	2.8	36
45	Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells In Vitro, Ex Vivo and In Vivo. Scientific Reports, 2017, 7, 8580.	3.3	34
46	Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice. Clinical and Experimental Immunology, 2017, 190, 19-28.	2.6	7
47	A compensatory mutagenesis study of a conserved hairpin in the M gene segment of influenza A virus shows its role in virus replication. RNA Biology, 2017, 14, 1606-1616.	3.1	14
48	Development of Endotoxin Tolerance Does Not Influence the Response to a Challenge with the Mucosal Live-Attenuated Influenza Vaccine in Humans In Vivo. Frontiers in Immunology, 2017, 8, 1600.	4.8	12
49	Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site. Journal of General Virology, 2017, 98, 1274-1281.	2.9	34
50	Host immunity dictates influenza A(H1N1)pdm09 infection outcome in hematology–oncology patients. Bone Marrow Transplantation, 2016, 51, 138-141.	2.4	3
51	Multiple Natural Substitutions in Avian Influenza A Virus PB2 Facilitate Efficient Replication in Human Cells. Journal of Virology, 2016, 90, 5928-5938.	3.4	47
52	Increased Protein Degradation Improves Influenza Virus Nucleoprotein-Specific CD8 ⁺ T Cell Activation <i>In Vitro</i> but Not in C57BL/6 Mice. Journal of Virology, 2016, 90, 10209-10219.	3.4	7
53	Viral vector-based influenza vaccines. Human Vaccines and Immunotherapeutics, 2016, 12, 2881-2901.	3.3	44
54	Influenza Vaccine Research funded by the European Commission FP7-Health-2013-Innovation-1 project. Vaccine, 2016, 34, 5845-5854.	3.8	9

#	Article	IF	CITATIONS
55	Influenza in long-term Dutch travelers in the tropics: symptoms and infections. BMC Infectious Diseases, 2016, 16, 158.	2.9	7
56	Universal influenza vaccines: a realistic option?. Clinical Microbiology and Infection, 2016, 22, S120-S124.	6.0	15
57	Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus. Journal of Virology, 2016, 90, 3794-3799.	3.4	44
58	Differential Recognition of Influenza A Viruses by M1 _{58–66} Epitope-Specific CD8 ⁺ T Cells Is Determined by Extraepitopic Amino Acid Residues. Journal of Virology, 2016, 90, 1009-1022.	3.4	23
59	Antigenic Maps of Influenza A(H3N2) Produced With Human Antisera Obtained After Primary Infection. Journal of Infectious Diseases, 2016, 213, 31-38.	4.0	35
60	Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head. Vaccines, 2015, 3, 239-262.	4.4	41
61	Low Virulence and Lack of Airborne Transmission of the Dutch Highly Pathogenic Avian Influenza Virus H5N8 in Ferrets. PLoS ONE, 2015, 10, e0129827.	2.5	40
62	Virus-specific T cells as correlate of (cross-)protective immunity against influenza. Vaccine, 2015, 33, 500-506.	3.8	121
63	Pathogenesis of Infection with 2009 Pandemic H1N1 Influenza Virus in Isogenic Guinea Pigs after Intranasal or Intratracheal Inoculation. American Journal of Pathology, 2015, 185, 643-650.	3.8	13
64	Identification of Amino Acid Substitutions Supporting Antigenic Change of Influenza A(H1N1)pdm09 Viruses. Journal of Virology, 2015, 89, 3763-3775.	3.4	73
65	Human Influenza A Virus–Specific CD8+ T-Cell Response Is Long-lived. Journal of Infectious Diseases, 2015, 212, 81-85.	4.0	49
66	Universal influenza vaccines, science fiction or soon reality?. Expert Review of Vaccines, 2015, 14, 1299-1301.	4.4	26
67	Immunodominant responses to the influenza virus M158–66 epitope: Stealth or protection?. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2417-E2417.	7.1	3
68	A Single Immunization With Modified Vaccinia Virus Ankara-Based Influenza Virus H7 Vaccine Affords Protection in the Influenza A(H7N9) Pneumonia Ferret Model. Journal of Infectious Diseases, 2015, 211, 791-800.	4.0	29
69	Induction of Influenza (H5N8) Antibodies by Modified Vaccinia Virus Ankara H5N1 Vaccine. Emerging Infectious Diseases, 2015, 21, 1086-1088.	4.3	16
70	Heterosubtypic immunity to H7N9 influenza virus in isogenic guinea pigs after infection with pandemic H1N1 virus. Vaccine, 2015, 33, 6977-6982.	3.8	5
71	Influenza vaccines: Where do we stand? Where do we go?. Vaccine, 2015, 33, 7026-7028.	3.8	2
72	Virus replication kinetics and pathogenesis of infection with H7N9 influenza virus in isogenic guinea pigs upon intratracheal inoculation. Vaccine, 2015, 33, 6983-6987.	3.8	1

#	Article	IF	CITATIONS
73	Influenza B viruses: not to be discounted. Future Microbiology, 2015, 10, 1447-1465.	2.0	80
74	Assessment of the antiviral properties of recombinant surfactant protein D against influenza B virus in vitro. Virus Research, 2015, 195, 43-46.	2.2	10
75	Influenza B virus-specific CD8+ T-lymphocytes strongly cross-react with viruses of the opposing influenza B lineage. Journal of General Virology, 2015, 96, 2061-2073.	2.9	41
76	Optimisations and Challenges Involved in the Creation of Various Bioluminescent and Fluorescent Influenza A Virus Strains for In Vitro and In Vivo Applications. PLoS ONE, 2015, 10, e0133888.	2.5	26
77	An autotransporter display platform for the development of multivalent recombinant bacterial vector vaccines. Microbial Cell Factories, 2014, 13, 162.	4.0	38
78	Modified Vaccinia Virus Ankara (MVA) as Production Platform for Vaccines against Influenza and Other Viral Respiratory Diseases. Viruses, 2014, 6, 2735-2761.	3.3	106
79	Antigenic Variation of Clade 2.1 H5N1 Virus Is Determined by a Few Amino Acid Substitutions Immediately Adjacent to the Receptor Binding Site. MBio, 2014, 5, e01070-14.	4.1	57
80	Detection of Nonhemagglutinating Influenza A(H3) Viruses by Enzyme-Linked Immunosorbent Assay in Quantitative Influenza Virus Culture. Journal of Clinical Microbiology, 2014, 52, 1672-1677.	3.9	32
81	Determinants of virulence of influenza A virus. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 479-490.	2.9	77
82	Genomewide Analysis of Reassortment and Evolution of Human Influenza A(H3N2) Viruses Circulating between 1968 and 2011. Journal of Virology, 2014, 88, 2844-2857.	3.4	137
83	Recombinant porcine surfactant protein D inhibits influenza A virus replication ex vivo. Virus Research, 2014, 181, 22-26.	2.2	11
84	Human Cytotoxic T Lymphocytes Directed to Seasonal Influenza A Viruses Cross-React with the Newly Emerging H7N9 Virus. Journal of Virology, 2014, 88, 1684-1693.	3.4	101
85	A central role for Notch in effector CD8+ T cell differentiation. Nature Immunology, 2014, 15, 1143-1151.	14.5	115
86	Antibody landscapes after influenza virus infection or vaccination. Science, 2014, 346, 996-1000.	12.6	379
87	Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial. Lancet Infectious Diseases, The, 2014, 14, 1196-1207.	9.1	82
88	Novel G3/DT adjuvant promotes the induction of protective T cells responses after vaccination with a seasonal trivalent inactivated split-virion influenza vaccine. Vaccine, 2014, 32, 5614-5623.	3.8	13
89	Identification, Characterization, and Natural Selection of Mutations Driving Airborne Transmission of A/H5N1 Virus. Cell, 2014, 157, 329-339.	28.9	237
90	Advances in influenza vaccination. F1000prime Reports, 2014, 6, 47.	5.9	18

#	Article	IF	CITATIONS
91	Molecular Assays for Quantitative and Qualitative Detection of Influenza Virus and Oseltamivir Resistance Mutations. Journal of Molecular Diagnostics, 2013, 15, 347-354.	2.8	32
92	Immune responses to infection with H5N1 influenza virus. Virus Research, 2013, 178, 44-52.	2.2	12
93	Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature, 2013, 501, 560-563.	27.8	182
94	The influence of influenza virus infections on the development of tuberculosis. Tuberculosis, 2013, 93, 338-342.	1.9	25
95	Substitutions Near the Receptor Binding Site Determine Major Antigenic Change During Influenza Virus Evolution. Science, 2013, 342, 976-979.	12.6	500
96	Low pathogenic avian influenza A(H7N9) virus causes high mortality in ferrets upon intratracheal challenge: A model to study intervention strategies. Vaccine, 2013, 31, 4995-4999.	3.8	41
97	Serum antibody response to influenza virus vaccination during chemotherapy treatment in adult patients with solid tumours. Vaccine, 2013, 31, 6177-6184.	3.8	41
98	Age distribution of cases caused by different influenza viruses. Lancet Infectious Diseases, The, 2013, 13, 646-647.	9.1	10
99	Virus infections: T cells come to the rescue. Current Opinion in Virology, 2013, 3, 422-424.	5.4	2
100	Clearance of influenza virus infections by T cells: risk of collateral damage?. Current Opinion in Virology, 2013, 3, 430-437.	5.4	39
101	Perigranuloma Localization and Abnormal Maturation of B Cells. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 406-416.	5.6	74
102	Pulmonary Surfactant Protein D in First-Line Innate Defence against Influenza A Virus Infections. Journal of Innate Immunity, 2013, 5, 197-208.	3.8	40
103	Recurring Influenza B Virus Infections in Seals. Emerging Infectious Diseases, 2013, 19, 511-512.	4.3	74
104	Effect of Travel on Influenza Epidemiology. Emerging Infectious Diseases, 2013, 19, 925-931.	4.3	34
105	Plasminogen Controls Inflammation and Pathogenesis of Influenza Virus Infections via Fibrinolysis. PLoS Pathogens, 2013, 9, e1003229.	4.7	74
106	Infection of the Upper Respiratory Tract with Seasonal Influenza A(H3N2) Virus Induces Protective Immunity in Ferrets against Infection with A(H1N1)pdm09 Virus after Intranasal, but Not Intratracheal, Inoculation. Journal of Virology, 2013, 87, 4293-4301.	3.4	42
107	Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses. Journal of General Virology, 2013, 94, 583-592.	2.9	52
108	<i>In Vitro</i> Assessment of the Immunological Significance of a Human Monoclonal Antibody Directed to the Influenza A Virus Nucleoprotein. Vaccine Journal, 2013, 20, 1333-1337.	3.1	38

#	Article	IF	CITATIONS
109	Profiling of Humoral Response to Influenza A(H1N1)pdm09 Infection and Vaccination Measured by a Protein Microarray in Persons with and without History of Seasonal Vaccination. PLoS ONE, 2013, 8, e54890.	2.5	28
110	Binding of DC-SIGN to the Hemagglutinin of Influenza A Viruses Supports Virus Replication in DC-SIGN Expressing Cells. PLoS ONE, 2013, 8, e56164.	2.5	41
111	Reassortment between Avian H5N1 and Human Influenza Viruses Is Mainly Restricted to the Matrix and Neuraminidase Gene Segments. PLoS ONE, 2013, 8, e59889.	2.5	36
112	Developing vaccines against virus infections: Between hope and fear. Human Vaccines and Immunotherapeutics, 2012, 8, 286-288.	3.3	0
113	Evasion of Influenza A Viruses from Innate and Adaptive Immune Responses. Viruses, 2012, 4, 1438-1476.	3.3	170
114	The Multibasic Cleavage Site in H5N1 Virus Is Critical for Systemic Spread along the Olfactory and Hematogenous Routes in Ferrets. Journal of Virology, 2012, 86, 3975-3984.	3.4	126
115	Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood, 2012, 119, 3744-3756.	1.4	189
116	Pathogenesis of influenza virus infections: the good, the bad and the ugly. Current Opinion in Virology, 2012, 2, 276-286.	5.4	119
117	Annual influenza vaccination affects the development of heterosubtypic immunity. Vaccine, 2012, 30, 7407-7410.	3.8	35
118	The number and position of N-linked glycosylation sites in the hemagglutinin determine differential recognition of seasonal and 2009 pandemic H1N1 influenza virus by porcine surfactant protein D. Virus Research, 2012, 169, 301-305.	2.2	17
119	Profiling of humoral immune responses to influenza viruses by using protein microarray. Clinical Microbiology and Infection, 2012, 18, 797-807.	6.0	82
120	Pediatric influenza vaccination: understanding the T-cell response. Expert Review of Vaccines, 2012, 11, 963-971.	4.4	13
121	Induction of humoral and cellular immune responses by antigen-expressing immunostimulatory liposomes. Journal of Controlled Release, 2012, 164, 323-330.	9.9	5
122	Avian Influenza A Virus in Wild Birds in Highly Urbanized Areas. PLoS ONE, 2012, 7, e38256.	2.5	20
123	Genetic evolution of the neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution. Journal of General Virology, 2012, 93, 1996-2007.	2.9	57
124	Use of influenza A viruses expressing reporter genes to assess the frequency of double infections in vitro. Journal of General Virology, 2012, 93, 1645-1648.	2.9	13
125	Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science, 2012, 336, 1534-1541.	12.6	1,416
126	Low attack rate of novel influenza A (H1N1) virus infection among healthcare workers: a prospective study in a setting with an elaborated containment plan. International Archives of Occupational and Environmental Health, 2012, 85, 163-170.	2.3	3

#	Article	IF	CITATIONS
127	Pathogenesis of Influenza A/H5N1 Virus Infection in Ferrets Differs between Intranasal and Intratracheal Routes of Inoculation. American Journal of Pathology, 2011, 179, 30-36.	3.8	95
128	Cross-protective immunity against influenza pH1N1 2009 viruses induced by seasonal influenza A (H3N2) virus is mediated by virus-specific T-cells. Journal of General Virology, 2011, 92, 2339-2349.	2.9	108
129	Use of GFP-expressing influenza viruses for the detection of influenza virus A/H5N1 neutralizing antibodies. Vaccine, 2011, 29, 3424-3430.	3.8	21
130	Vaccination strategies to protect children against seasonal and pandemic influenza. Vaccine, 2011, 29, 7551-7553.	3.8	5
131	Redundancy of the influenza A virus-specific cytotoxic T lymphocyte response in HLA-B*2705 transgenic mice limits the impact of a mutation in the immunodominant NP383–391 epitope on influenza pathogenesis. Virus Research, 2011, 155, 123-130.	2.2	6
132	Immune responses to influenza virus infection. Virus Research, 2011, 162, 19-30.	2.2	270
133	Preclinical evaluation of influenza vaccines based on replication-deficient poxvirus vector MVA. Procedia in Vaccinology, 2011, 4, 78-83.	0.4	2
134	Response to 2009 Pandemic Influenza A (H1N1) Vaccine in HIV-Infected Patients and the Influence of Prior Seasonal Influenza Vaccination. PLoS ONE, 2011, 6, e16496.	2.5	42
135	Assessment of the Antiviral Properties of Recombinant Porcine SP-D against Various Influenza A Viruses In Vitro. PLoS ONE, 2011, 6, e25005.	2.5	28
136	Influenza vaccination and hemostasis: no sustainable procoagulant effects from 2009 H1N1 influenza vaccine in healthy healthcare workers. Journal of Thrombosis and Haemostasis, 2011, 9, 1659-1661.	3.8	1
137	The ins and outs of universal childhood influenza vaccination. Future Microbiology, 2011, 6, 1171-1184.	2.0	8
138	Possible Increased Pathogenicity of Pandemic (H1N1) 2009 Influenza Virus upon Reassortment. Emerging Infectious Diseases, 2011, 17, 200-208.	4.3	67
139	Insertion of a multibasic cleavage site in the haemagglutinin of human influenza H3N2 virus does not increase pathogenicity in ferrets. Journal of General Virology, 2011, 92, 1410-1415.	2.9	32
140	Towards universal influenza vaccines?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2766-2773.	4.0	51
141	Efficacy of Vaccination with Different Combinations of MF59-Adjuvanted and Nonadjuvanted Seasonal and Pandemic Influenza Vaccines against Pandemic H1N1 (2009) Influenza Virus Infection in Ferrets. Journal of Virology, 2011, 85, 2851-2858.	3.4	46
142	Prevalence of Antibodies against Seasonal Influenza A and B Viruses in Children in Netherlands. Vaccine Journal, 2011, 18, 469-476.	3.1	155
143	Characterization of the Human CD8 ⁺ T Cell Response following Infection with 2009 Pandemic Influenza H1N1 Virus. Journal of Virology, 2011, 85, 12057-12061.	3.4	47
144	Response to influenza virus vaccination during chemotherapy in patients with breast cancer. Annals of Oncology, 2011, 22, 2031-2035.	1.2	52

#	Article	IF	CITATIONS
145	Immunogenicity, Boostability, and Sustainability of the Immune Response after Vaccination against Influenza A Virus (H1N1) 2009 in a Healthy Population. Vaccine Journal, 2011, 18, 1401-1405.	3.1	39
146	Annual Vaccination against Influenza Virus Hampers Development of Virus-Specific CD8 ⁺ T Cell Immunity in Children. Journal of Virology, 2011, 85, 11995-12000.	3.4	84
147	Vaccination against Seasonal Influenza A/H3N2 Virus Reduces the Induction of Heterosubtypic Immunity against Influenza A/H5N1 Virus Infection in Ferrets. Journal of Virology, 2011, 85, 2695-2702.	3.4	94
148	Induction of Virus-Specific Cytotoxic T Lymphocytes as a Basis for the Development of Broadly Protective Influenza Vaccines. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-12.	3.0	76
149	A Recombinant Influenza A Virus Expressing Domain III of West Nile Virus Induces Protective Immune Responses against Influenza and West Nile Virus. PLoS ONE, 2011, 6, e18995.	2.5	34
150	Influenza A(H1N1) Oseltamivir Resistant Viruses in the Netherlands During the Winter 2007/2008. The Open Virology Journal, 2011, 5, 154-162.	1.8	4
151	Pandemic 2009 H1N1 Influenza Virus Causes Diffuse Alveolar Damage in Cynomolgus Macaques. Veterinary Pathology, 2010, 47, 1040-1047.	1.7	34
152	Plasminogen promotes influenza A virus replication through an annexin 2-dependent pathway in the absence of neuraminidase. Journal of General Virology, 2010, 91, 2753-2761.	2.9	37
153	Evaluation of a modified vaccinia virus Ankara (MVA)-based candidate pandemic influenza A/H1N1 vaccine in the ferret model. Journal of General Virology, 2010, 91, 2745-2752.	2.9	38
154	Introduction of Virulence Markers in PB2 of Pandemic Swine-Origin Influenza Virus Does Not Result in Enhanced Virulence or Transmission. Journal of Virology, 2010, 84, 3752-3758.	3.4	126
155	Vaccination with whole inactivated virus vaccine affects the induction of heterosubtypic immunity against influenza virus A/H5N1 and immunodominance of virus-specific CD8+ T-cell responses in mice. Journal of General Virology, 2010, 91, 1743-1753.	2.9	59
156	Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 2010, 84, 11802-11813.	3.4	197
157	Recombinant Soluble, Multimeric HA and NA Exhibit Distinctive Types of Protection against Pandemic Swine-Origin 2009 A(H1N1) Influenza Virus Infection in Ferrets. Journal of Virology, 2010, 84, 10366-10374.	3.4	96
158	A Single Immunization with CoVaccine HT-Adjuvanted H5N1 Influenza Virus Vaccine Induces Protective Cellular and Humoral Immune Responses in Ferrets. Journal of Virology, 2010, 84, 7943-7952.	3.4	37
159	Animal models for the preclinical evaluation of candidate influenza vaccines. Expert Review of Vaccines, 2010, 9, 59-72.	4.4	85
160	<i>In Vitro</i> Assessment of Attachment Pattern and Replication Efficiency of H5N1 Influenza A Viruses with Altered Receptor Specificity. Journal of Virology, 2010, 84, 6825-6833.	3.4	146
161	Molecular Determinants of Adaptation of Highly Pathogenic Avian Influenza H7N7 Viruses to Efficient Replication in the Human Host. Journal of Virology, 2010, 84, 1597-1606.	3.4	148
162	Insertion of a Multibasic Cleavage Motif into the Hemagglutinin of a Low-Pathogenic Avian Influenza H6N1 Virus Induces a Highly Pathogenic Phenotype. Journal of Virology, 2010, 84, 7953-7960.	3.4	73

#	Article	IF	CITATIONS
163	Cross-reactive CD8 ⁺ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12599-12604.	7.1	163
164	Targets for the Induction of Protective Immunity Against Influenza A Viruses. Viruses, 2010, 2, 166-188.	3.3	12
165	Severity of Pneumonia Due to New H1N1 Influenza Virus in Ferrets Is Intermediate between That Due to Seasonal H1N1 Virus and Highly Pathogenic Avian Influenza H5N1 Virus. Journal of Infectious Diseases, 2010, 201, 993-999.	4.0	121
166	Seasonal and Pandemic Human Influenza Viruses Attach Better to Human Upper Respiratory Tract Epithelium than Avian Influenza Viruses. American Journal of Pathology, 2010, 176, 1614-1618.	3.8	146
167	Highly Pathogenic Avian Influenza Virus H7N7 Isolated From a Fatal Human Case Causes Respiratory Disease in Cats but Does Not Spread Systemically. American Journal of Pathology, 2010, 177, 2185-2190.	3.8	33
168	Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus–infected mice. Journal of Experimental Medicine, 2009, 206, 2339-2349.	8.5	311
169	Lack of CD200 Enhances Pathological T Cell Responses during Influenza Infection. Journal of Immunology, 2009, 183, 1990-1996.	0.8	93
170	Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Ferrets. Science, 2009, 325, 481-483.	12.6	544
171	Vaccination strategies and vaccine formulations for epidemic and pandemic influenza control. Hum Vaccin, 2009, 5, 126-135.	2.4	41
172	Recombinant Modified Vaccinia Virus Ankara Expressing the Hemagglutinin Gene Confers Protection against Homologous and Heterologous H5N1 Influenza Virus Infections in Macaques. Journal of Infectious Diseases, 2009, 199, 405-413.	4.0	71
173	Vaccine-induced enhancement of viral infections. Vaccine, 2009, 27, 505-512.	3.8	153
174	Influenza virus CTL epitopes, remarkably conserved and remarkably variable. Vaccine, 2009, 27, 6363-6365.	3.8	58
175	Intradermal influenza vaccination in immunocompromized patients is immunogenic and feasible. Vaccine, 2009, 27, 2469-2474.	3.8	59
176	Preclinical evaluation of a modified vaccinia virus Ankara (MVA)-based vaccine against influenza A/H5N1 viruses. Vaccine, 2009, 27, 6296-6299.	3.8	38
177	Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus. Vaccine, 2009, 27, 4983-4989.	3.8	90
178	Characterization of recombinant influenza A virus as a vector for HIV-1 p17Gag. Vaccine, 2009, 27, 5735-5739.	3.8	12
179	The novel adjuvant CoVaccineHTâ,,¢ increases the immunogenicity of cell-culture derived influenza A/H5N1 vaccine and induces the maturation of murine and human dendritic cells in vitro. Vaccine, 2009, 27, 6833-6839.	3.8	19
180	Practical Considerations for High-Throughput Influenza A Virus Surveillance Studies of Wild Birds by Use of Molecular Diagnostic Tests. Journal of Clinical Microbiology, 2009, 47, 666-673.	3.9	126

#	Article	IF	CITATIONS
181	Candidate influenza vaccines based on recombinant modified vaccinia virus Ankara. Expert Review of Vaccines, 2009, 8, 447-454.	4.4	58
182	Yearly influenza vaccinations: a double-edged sword?. Lancet Infectious Diseases, The, 2009, 9, 784-788.	9.1	78
183	Vaccination against Human Influenza A/H3N2 Virus Prevents the Induction of Heterosubtypic Immunity against Lethal Infection with Avian Influenza A/H5N1 Virus. PLoS ONE, 2009, 4, e5538.	2.5	89
184	Both Conventional and Interferon Killer Dendritic Cells Have Antigen-Presenting Capacity during Influenza Virus Infection. PLoS ONE, 2009, 4, e7187.	2.5	36
185	MVA-Based H5N1 Vaccine Affords Cross-Clade Protection in Mice against Influenza A/H5N1 Viruses at Low Doses and after Single Immunization. PLoS ONE, 2009, 4, e7790.	2.5	45
186	Avian influenza viruses in mammals. OIE Revue Scientifique Et Technique, 2009, 28, 137-159.	1.2	116
187	FATT TL assay for detection of antigenâ€specific cellâ€mediated cytotoxicity. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 1058-1065.	1.5	16
188	Correlates of protection: Novel generations of influenza vaccines. Vaccine, 2008, 26, D41-D44.	3.8	71
189	Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine, 2008, 26, D31-D34.	3.8	208
190	Evaluation of vaccination strategies against infection with feline immunodeficiency virus (FIV) based on recombinant viral vectors expressing FIV Rev and OrfA. Veterinary Immunology and Immunopathology, 2008, 126, 332-338.	1.2	3
191	DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-1± and TNF-1±. Virus Research, 2008, 135, 64-71.	2.2	62
192	Intrahost evolution of envelope glycoprotein and OrfA sequences after experimental infection of cats with a molecular clone and a biological isolate of feline immunodeficiency virus. Virus Research, 2008, 137, 24-32.	2.2	9
193	The Global Circulation of Seasonal Influenza A (H3N2) Viruses. Science, 2008, 320, 340-346.	12.6	628
194	Selective Expansion of Influenza A Virus–Specific T Cells in Symptomatic Human Carotid Artery Atherosclerotic Plaques. Stroke, 2008, 39, 174-179.	2.0	29
195	Cross-Recognition of Avian H5N1 Influenza Virus by Human Cytotoxic T-Lymphocyte Populations Directed to Human Influenza A Virus. Journal of Virology, 2008, 82, 5161-5166.	3.4	210
196	Influenza Virus Vaccination Induces Interleukin-12/23 Receptor β1 (IL-12/23Rβ1)-Independent Production of Gamma Interferon (IFN-γ) and Humoral Immunity in Patients with Genetic Deficiencies in IL-12/23Rβ1 or IFN-γ Receptor I. Vaccine Journal, 2008, 15, 1171-1175.	3.1	11
197	Annexin II Incorporated into Influenza Virus Particles Supports Virus Replication by Converting Plasminogen into Plasmin. Journal of Virology, 2008, 82, 6820-6828.	3.4	73
198	Clearance of influenza virus from the lung depends on migratory langerin+CD11bâ^' but not plasmacytoid dendritic cells. Journal of Experimental Medicine, 2008, 205, 1621-1634.	8.5	419

#	Article	IF	CITATIONS
199	Highly Pathogenic Avian Influenza Virus (H5N1) Infection in Red Foxes Fed Infected Bird Carcasses. Emerging Infectious Diseases, 2008, 14, 1835-1841.	4.3	66
200	Spatial, Temporal, and Species Variation in Prevalence of Influenza A Viruses in Wild Migratory Birds. PLoS Pathogens, 2007, 3, e61.	4.7	591
201	Poor serological responses upon influenza vaccination in patients with rheumatoid arthritis treated with rituximab. Annals of the Rheumatic Diseases, 2007, 66, 1402-1403.	0.9	80
202	Antigenic and Genetic Evolution of Swine Influenza A (H3N2) Viruses in Europe. Journal of Virology, 2007, 81, 4315-4322.	3.4	169
203	The effect of anti-tumour necrosis factor treatment on the antibody response to influenza vaccination. Annals of the Rheumatic Diseases, 2007, 67, 713-716.	0.9	160
204	Assessment of the extent of variation in influenza A virus cytotoxic T-lymphocyte epitopes by using virus-specific CD8+ T-cell clones. Journal of General Virology, 2007, 88, 530-535.	2.9	48
205	A reverse-genetics system for Influenza A virus using T7 RNA polymerase. Journal of General Virology, 2007, 88, 1281-1287.	2.9	61
206	Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine, 2007, 25, 612-620.	3.8	201
207	An amino acid substitution in the influenza A virus hemagglutinin associated with escape from recognition by human virus-specific CD4+ T-cells. Virus Research, 2007, 126, 282-287.	2.2	15
208	Attachment of infectious influenza A viruses of various subtypes to live mammalian and avian cells as measured by flow cytometry. Virus Research, 2007, 129, 175-181.	2.2	33
209	Human and Avian Influenza Viruses Target Different Cells in the Lower Respiratory Tract of Humans and Other Mammals. American Journal of Pathology, 2007, 171, 1215-1223.	3.8	473
210	Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Current Opinion in Biotechnology, 2007, 18, 529-536.	6.6	111
211	The loss of immunodominant epitopes affects interferon-Î ³ production and lytic activity of the human influenza virus-specific cytotoxic T lymphocyte response <i>in vitro</i> . Clinical and Experimental Immunology, 2007, 148, 296-306.	2.6	32
212	Rapid sequencing of the non-coding regions of influenza A virus. Journal of Virological Methods, 2007, 139, 85-89.	2.1	24
213	Recombinant Modified Vaccinia Virus Ankara–Based Vaccine Induces Protective Immunity in Mice against Infection with Influenza Virus H5N1. Journal of Infectious Diseases, 2007, 195, 1598-1606.	4.0	82
214	Influenza A Virus (H5N1) Infection in Cats Causes Systemic Disease with Potential Novel Routes of Virus Spread within and between Hosts. American Journal of Pathology, 2006, 168, 176-183.	3.8	252
215	Host Species Barriers to Influenza Virus Infections. Science, 2006, 312, 394-397.	12.6	413
216	Fitness costs limit escape from cytotoxic T lymphocytes by influenza A viruses. Vaccine, 2006, 24, 6594-6596.	3.8	67

#	Article	IF	CITATIONS
217	Feline friend or potential foe?. Nature, 2006, 440, 741-742.	27.8	42
218	Design and use of conditional MHC class I ligands. Nature Medicine, 2006, 12, 246-251.	30.7	304
219	H5N1 Virus Attachment to Lower Respiratory Tract. Science, 2006, 312, 399-399.	12.6	573
220	The Hypervariable Immunodominant NP 418-426 Epitope from the Influenza A Virus Nucleoprotein Is Recognized by Cytotoxic T Lymphocytes with High Functional Avidity. Journal of Virology, 2006, 80, 6024-6032.	3.4	25
221	Newer respiratory virus infections: human metapneumovirus, avian influenza virus, and human coronaviruses. Current Opinion in Infectious Diseases, 2005, 18, 141-146.	3.1	77
222	Functional profile of human influenza virus-specific cytotoxic T lymphocyte activity is influenced by interleukin-2 concentration and epitope specificity. Clinical and Experimental Immunology, 2005, 142, 45-52.	2.6	12
223	Global task force for influenza. Nature, 2005, 435, 419-420.	27.8	50
224	Mallards and Highly Pathogenic Avian Influenza Ancestral Viruses, Northern Europe. Emerging Infectious Diseases, 2005, 11, 1545-1551.	4.3	187
225	Protection of Mice against Lethal Infection with Highly Pathogenic H7N7 Influenza A Virus by Using a Recombinant Low-Pathogenicity Vaccine Strain. Journal of Virology, 2005, 79, 12401-12407.	3.4	76
226	Functional Constraints of Influenza A Virus Epitopes Limit Escape from Cytotoxic T Lymphocytes. Journal of Virology, 2005, 79, 11239-11246.	3.4	89
227	Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants. Journal of General Virology, 2005, 86, 1801-1805.	2.9	52
228	Fluorescent Antigen–Transfected Target Cell Cytotoxic T Lymphocyte Assay for Ex Vivo Detection of Antigen‧pecific Cellâ€Mediated Cytotoxicity. Journal of Infectious Diseases, 2005, 192, 1183-1190.	4.0	25
229	Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls. Journal of Virology, 2005, 79, 2814-2822.	3.4	1,274
230	Influenza vaccination in asthmatic children: effects on quality of life and symptoms. European Respiratory Journal, 2004, 24, 925-931.	6.7	44
231	Functional Compensation of a Detrimental Amino Acid Substitution in a Cytotoxic-T-Lymphocyte Epitope of Influenza A Viruses by Comutations. Journal of Virology, 2004, 78, 8946-8949.	3.4	39
232	A Mutation in the HLA-B * 2705-Restricted NP 383-391 Epitope Affects the Human Influenza A Virus-Specific Cytotoxic T-Lymphocyte Response In Vitro. Journal of Virology, 2004, 78, 5216-5222.	3.4	72
233	Recognition of Homo- and Heterosubtypic Variants of Influenza A Viruses by Human CD8+ T Lymphocytes. Journal of Immunology, 2004, 172, 2453-2460.	0.8	121
234	Antibodies specific for hypervariable regions 3 to 5 of the feline immunodeficiency virus envelope glycoprotein are not solely responsible for vaccine-induced acceleration of challenge infection in cats. Journal of General Virology, 2004, 85, 1833-1841.	2.9	12

GUUS F RIMMELZWAAN

#	Article	IF	CITATIONS
235	Preferential HLA Usage in the Influenza Virus-Specific CTL Response. Journal of Immunology, 2004, 172, 4435-4443.	0.8	48
236	Influenza Vaccination in Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 488-493.	5.6	131
237	Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nature Medicine, 2004, 10, 290-293.	30.7	371
238	Avian H5N1 Influenza in Cats. Science, 2004, 306, 241-241.	12.6	374
239	Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science, 2004, 305, 371-376.	12.6	1,527
240	Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1356-1361.	7.1	953
241	Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Virus Research, 2004, 103, 97-100.	2.2	94
242	Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments. Virus Research, 2004, 103, 155-161.	2.2	171
243	Human airway epithelial cells present antigen to influenza virus-specific CD8+ CTL inefficiently after incubation with viral protein together with ISCOMATRIX®. Vaccine, 2004, 22, 2769-2775.	3.8	10
244	Nosocomial Influenza Infection among Post-influenza-vaccinated Patients with Severe Pulmonary Diseases. Journal of Infection, 2003, 46, 129-132.	3.3	28
245	Emerging viral infections in a rapidly changing world. Current Opinion in Biotechnology, 2003, 14, 641-646.	6.6	71
246	Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet, The, 2003, 362, 263-270.	13.7	956
247	Influenza A Virus Surveillance in Wild Birds in Northern Europe in 1999 and 2000. Avian Diseases, 2003, 47, 857-860.	1.0	85
248	A Primate Model to Study the Pathogenesis of Influenza A (H5N1) Virus Infection. Avian Diseases, 2003, 47, 931-933.	1.0	54
249	Population dynamics of rapid fixation in cytotoxic T lymphocyte escape mutants of influenza A. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11143-11147.	7.1	103
250	Pathology of Human Influenza A (H5N1) Virus Infection in Cynomolgus Macaques (Macaca) Tj ETQq0 0 0 rgBT /(Dverlock 1	0 Tf 50 142 T 117
251	SARS virus infection of cats and ferrets. Nature, 2003, 425, 915-915.	27.8	45

Haemagglutination-inhibiting antibody to influenza virus. Developments in Biologicals, 2003, 115, 63-73. 0.5 155

#	Article	IF	CITATIONS
253	The Magnitude and Specificity of Influenza A Virus-Specific Cytotoxic T-Lymphocyte Responses in Humans Is Related to HLA-A and -B Phenotype. Journal of Virology, 2002, 76, 582-590.	3.4	118
254	Sequence Variation in a Newly Identified HLA-B35-Restricted Epitope in the Influenza A Virus Nucleoprotein Associated with Escape from Cytotoxic T Lymphocytes. Journal of Virology, 2002, 76, 2567-2572.	3.4	103
255	DNA vaccination of ferrets with chimeric influenza A virus hemagglutinin (H3) genes. Vaccine, 2002, 20, 2045-2052.	3.8	18
256	In vitro Effect of Bioactive Compounds on Influenza Virus Specific B- and T-Cell Responses. Scandinavian Journal of Immunology, 2002, 55, 24-32.	2.7	20
257	Influenza A Virus Specific T Cell Immunity in Humans during Aging. Virology, 2002, 299, 100-108.	2.4	60
258	A single dose of an ISCOM influenza vaccine induces long-lasting protective immunity against homologous challenge infection but fails to protect Cynomolgus macaques against distant drift variants of influenza A (H3N2) viruses. Vaccine, 2001, 20, 158-163.	3.8	39
259	PCR-based influenza A virus surveillance in European birds. International Congress Series, 2001, 1219, 275-282.	0.2	0
260	Influenza vaccines: new developments. Current Opinion in Pharmacology, 2001, 1, 491-496.	3.5	27
261	Antigen processing for MHC class I restricted presentation of exogenous influenza A virus nucleoprotein by B-lymphoblastoid cells. Clinical and Experimental Immunology, 2001, 125, 423-431.	2.6	17
262	Antigenic and Genetic Characterization of Swine Influenza A (H1N1) Viruses Isolated from Pneumonia Patients in The Netherlands. Virology, 2001, 282, 301-306.	2.4	46
263	Pathogenesis of Influenza A (H5N1) Virus Infection in a Primate Model. Journal of Virology, 2001, 75, 6687-6691.	3.4	230
264	Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. Journal of Medical Virology, 2000, 61, 94-99.	5.0	200
265	Influenza Virus: a Master of Metamorphosis. Journal of Infection, 2000, 40, 218-228.	3.3	100
266	Antigenic Drift in the Influenza A Virus (H3N2) Nucleoprotein and Escape from Recognition by Cytotoxic T Lymphocytes. Journal of Virology, 2000, 74, 6800-6807.	3.4	164
267	Zanamivir Susceptibility Monitoring and Characterization of Influenza Virus Clinical Isolates Obtained during Phase II Clinical Efficacy Studies. Antimicrobial Agents and Chemotherapy, 2000, 44, 78-87.	3.2	106
268	Introduction of the haemagglutinin transmembrane region in the influenza virus matrix protein facilitates its incorporation into ISCOM and activation of specific CD8+ cytotoxic T lymphocytes. Vaccine, 2000, 19, 514-522.	3.8	27
269	A randomized, double blind study in young healthy adults comparing cell mediated and humoral immune responses induced by influenza ISCOM? vaccines and conventional vaccines. Vaccine, 2000, 19, 1180-1187.	3.8	123
270	Influenza B Virus in Seals. Science, 2000, 288, 1051-1053.	12.6	316

#	Article	lF	CITATIONS
271	Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. , 2000, 61, 94.		1
272	Detection of Influenza A Viruses from Different Species by PCR Amplification of Conserved Sequences in the Matrix Gene. Journal of Clinical Microbiology, 2000, 38, 4096-4101.	3.9	378
273	Efficacy of influenza vaccination in adult liver transplant recipients. Journal of Medical Virology, 2000, 61, 85-93.	5.0	29
274	Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. Journal of Medical Virology, 2000, 61, 94-9.	5.0	93
275	Inhibition of Influenza Virus Replication by Nitric Oxide. Journal of Virology, 1999, 73, 8880-8883.	3.4	107
276	ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine, 1999, 17, 1355-1358.	3.8	60
277	Characterization of high-growth reassortant influenza A viruses generated in MDCK cells cultured in serum-free medium. Vaccine, 1999, 17, 1942-1950.	3.8	46
278	Influenza virus subtype cross-reactivities of haemagglutination inhibiting and virus neutralising serum antibodies induced by infection or vaccination with an ISCOM-based vaccine. Vaccine, 1999, 17, 2512-2516.	3.8	26
279	Comparison of RNA hybridization, hemagglutination assay, titration of infectious virus and immunofluorescence as methods for monitoring influenza virus replication in vitro. Journal of Virological Methods, 1998, 74, 57-66.	2.1	194
280	Accelerated viraemia in cats vaccinated with fixed autologous FIV-infected cells. Veterinary Immunology and Immunopathology, 1998, 65, 353-365.	1.2	15
281	Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet, The, 1998, 351, 472-477.	13.7	1,266
282	Restored humoral immune response to influenza vaccination in HIV-infected adults treated with highly active antiretroviral therapy. Aids, 1998, 12, F217-F223.	2.2	166
283	Use of Recombinant Nucleoproteins in Enzyme-Linked Immunosorbent Assays for Detection of Virus-Specific Immunoglobulin A (IgA) and IgG Antibodies in Influenza Virus A- or B-Infected Patients. Journal of Clinical Microbiology, 1998, 36, 3527-3531.	3.9	25
284	Induction of virus-specific immunity by iscoms. Developments in Biological Standardization, 1998, 92, 49-58.	0.2	3
285	Induction of protective immunity against influenza virus in a macaque model: comparison of conventional and iscom vaccines Journal of General Virology, 1997, 78, 757-765.	2.9	98
286	Accelerated Viremia in Cats Vaccinated with Recombinant Vaccinia Virus Expressing Envelope Glycoprotein of Feline Immunodeficiency Virus. AIDS Research and Human Retroviruses, 1996, 12, 437-441.	1.1	12
287	Discussion. Vaccine, 1995, 13, 703-705.	3.8	33
288	Two different mutations in the envelope protein of feline immunodeficiency virus allow the virus to escape from neutralization by feline serum antibodies. Veterinary Immunology and Immunopathology, 1995, 46, 51-59.	1.2	17

#	Article	IF	CITATIONS
289	A determinant of feline immunodeficiency virus involved in Crandell feline kidney cell tropism. Veterinary Immunology and Immunopathology, 1995, 46, 61-69.	1.2	48
290	A Novel Generation of Viral Vaccines Based on the ISCOM Matrix. Pharmaceutical Biotechnology, 1995, 6, 543-558.	0.3	20
291	Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines. Journal of Virology, 1995, 69, 3704-3711.	3.4	119
292	Neutralization of feline immunodeficiency virus by polyclonal feline antibody: simultaneous involvement of hypervariable regions 4 and 5 of the surface glycoprotein. Journal of Virology, 1995, 69, 5124-5127.	3.4	29
293	Removal of the cleavage site of recombinant feline immunodeficiency virus envelope protein facilitates incorporation of the surface glycoprotein in immune-stimulating complexes. Journal of General Virology, 1994, 75, 2097-2102.	2.9	30
294	gag- and env-specific serum antibodies in cats after natural and experimental infection with feline immunodeficiency virus. Veterinary Microbiology, 1994, 39, 153-165.	1.9	16
295	A single amino acid substitution in hypervariable region 5 of the envelope protein of feline immunodeficiency virus allows escape from virus neutralization. Journal of Virology, 1993, 67, 2202-2208.	3.4	54
296	Isolation and partial characterization of infectious molecular clones of feline immunodeficiency virus obtained directly from bone marrow DNA of a naturally infected cat. Journal of Virology, 1992, 66, 1091-1097.	3.4	76
297	The use of enzyme-linked immunosorbent assay systems for serology and antigen detection in parvovirus, coronavirus and rotavirus infections in dogs in The Netherlands. Veterinary Microbiology, 1991, 26, 25-40.	1.9	39
298	Induction and characterization of monoclonal anti-idiotypic antibodies reactive with idiotopes of canine parvovirus neutralizing monoclonal antibodies. Veterinary Immunology and Immunopathology, 1991, 29, 139-150.	1.2	4
299	Evaluation of enzymeâ€ŀinked immunosorbent assays based on monoclonal antibodies for the serology and antigen detection in canine parvovirus infections. Veterinary Quarterly, 1990, 12, 14-20.	6.7	14
300	Feline Immunodeficiency Virus (FIV) Infection in the Cat as a Model for HIV Infection in Man: FIV-Induced Impairment of Immune Function. AIDS Research and Human Retroviruses, 1990, 6, 1373-1378.	1.1	96
301	[26] Monoclonal anti-idiotypic antibody vaccines against poliovirus, canine parvovirus, and rabies virus. Methods in Enzymology, 1989, 178, 375-390.	1.0	6
302	Induction of Anti-Viral Immune Response by Immunization with Monoclonal Anti-idiotype Antibodies Directed to Private Idiotopes. Viral Immunology, 1989, 2, 255-262.	1.3	9
303	Purification of infectious canine parvovirus from cell culture by affinity chromatography with monoclonal antibodies. Journal of Virological Methods, 1987, 15, 313-322.	2.1	17
304	Antigenic Cartography of Human and Swine Influenza A (H3N2) Viruses. Novartis Foundation Symposium, 0, , 32-44.	1.1	1