Paola Giusti-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3315511/publications.pdf

Version: 2024-02-01

31 papers

16,151 citations

257450 24 h-index 32 g-index

42 all docs 42 docs citations

times ranked

42

21374 citing authors

#	Article	IF	CITATIONS
1	Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511, 421-427.	27.8	6,934
2	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.	21.4	2,224
3	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27. 8	929
4	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
5	Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .	12.6	805
6	Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 2019, 51, 1207-1214.	21.4	641
7	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.	28.9	623
8	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	12.6	618
9	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	12.6	516
10	Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 2018, 50, 825-833.	21.4	497
11	The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3: Genes, Genomes, Genetics, 2016, 6, 263-279.	1.8	199
12	Genomes of the Mouse Collaborative Cross. Genetics, 2017, 206, 537-556.	2.9	189
13	Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nature Communications, 2018, 9, 3121.	12.8	141
14	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. American Journal of Human Genetics, 2018, 102, 1185-1194.	6.2	119
15	Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in Neural Development and Diseases. Molecular Cell, 2020, 79, 521-534.e15.	9.7	110
16	A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts. Biological Psychiatry, 2021, 90, 611-620.	1.3	103
17	Non-coding variability at the APOE locus contributes to the Alzheimer's risk. Nature Communications, 2019, 10, 3310.	12.8	91
18	The genomics of schizophrenia: update and implications. Journal of Clinical Investigation, 2013, 123, 4557-4563.	8.2	87

#	Article	IF	CITATIONS
19	A meta-analysis of gene expression quantitative trait loci in brain. Translational Psychiatry, 2014, 4, e459-e459.	4.8	77
20	Activity-Dependent p25 Generation Regulates Synaptic Plasticity and AÎ 2 -Induced Cognitive Impairment. Cell, 2014, 157, 486-498.	28.9	74
21	Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia. Nature Communications, 2020, 11, 1842.	12.8	56
22	Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nature Communications, 2021, 12, 3968.	12.8	48
23	Revealing the brain's molecular architecture. Science, 2018, 362, 1262-1263.	12.6	45
24	Synaptic Deficits Are Rescued in the p25/Cdk5 Model of Neurodegeneration by the Reduction of \hat{l}^2 -Secretase (BACE1). Journal of Neuroscience, 2011, 31, 15751-15756.	3.6	29
25	Shared genetic risk between eating disorderâ€and substanceâ€useâ€related phenotypes: Evidence from genomeâ€wide association studies. Addiction Biology, 2021, 26, e12880.	2.6	28
26	Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects. Molecular Psychiatry, 2018, 23, 708-712.	7.9	27
27	Gene expression changes following chronic antipsychotic exposure in single cells from mouse striatum. Molecular Psychiatry, 2022, 27, 2803-2812.	7.9	10
28	THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data. PLoS Genetics, 2022, 18, e1010102.	3.5	9
29	Common-variant associations with fragile X syndrome. Molecular Psychiatry, 2019, 24, 338-344.	7.9	8
30	Bayesian modeling of skewed X inactivation in genetically diverse mice identifies a novel <i>Xce</i> allele associated with copy number changes. Genetics, 2021, 218, .	2.9	5
31	Antipsychotic Behavioral Phenotypes in the Mouse Collaborative Cross Recombinant Inbred Inter-Crosses (RIX). G3: Genes, Genomes, Genetics, 2020, 10, 3165-3177.	1.8	4