Jer-Tsong Hsieh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3314766/publications.pdf

Version: 2024-02-01

109321 138484 4,214 115 35 58 citations g-index h-index papers 117 117 117 6429 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitotic phosphorylation of tumor suppressor DAB2IP maintains spindle assembly checkpoint and chromosomal stability through activating PLK1-Mps1 signal pathway and stabilizing mitotic checkpoint complex. Oncogene, 2022, 41, 489-501.	5.9	7
2	The central role of Sphingosine kinase 1 in the development of neuroendocrine prostate cancer (NEPC): A new targeted therapy of NEPC. Clinical and Translational Medicine, 2022, 12, e695.	4.0	8
3	Interethnic differences in the impact of body mass index on upper tract urothelial carcinoma following radical nephroureterectomy. World Journal of Urology, 2021, 39, 491-500.	2.2	2
4	SPARC is a key mediator of TGFâ€Î²â€induced renal cancer metastasis. Journal of Cellular Physiology, 2021, 236, 1926-1938.	4.1	29
5	Quantitative measurements of IR780 in formulations and tissues. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113780.	2.8	3
6	Hyperfluorescence Imaging of Kidney Cancer Enabled by Renal Secretion Pathway Dependent Efflux Transport. Angewandte Chemie - International Edition, 2021, 60, 351-359.	13.8	23
7	DAB2IP modulates primary cilia formation associated with renal tumorigenesis. Neoplasia, 2021, 23, 169-180.	5.3	3
8	Bacterial Genotoxin-Coated Nanoparticles for Radiotherapy Sensitization in Prostate Cancer. Biomedicines, 2021, 9, 151.	3.2	7
9	RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation. Biomolecules, 2021, 11, 860.	4.0	7
10	Validation of SV2A-Targeted PET Imaging for Noninvasive Assessment of Neuroendocrine Differentiation in Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 13085.	4.1	10
11	Thermo-responsive Fluorescent Nanoparticles for Multimodal Imaging and Treatment of Cancers. Nanotheranostics, 2020, 4, 1-13.	5.2	29
12	PTRF independently predicts progression and survival in multiracial upper tract urothelial carcinoma following radical nephroureterectomy. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 496-505.	1.6	6
13	Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nature Cell Biology, 2020, 22, 1130-1142.	10.3	28
14	The AKR1C3/ARâ€√7 complex maintains CRPC tumour growth by repressing B4GALT1 expression. Journal of Cellular and Molecular Medicine, 2020, 24, 12032-12043.	3.6	13
15	Wnt \hat{l}^2 -catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma. Cell Death and Disease, 2020, $11,771$.	6.3	57
16	Nanotheranostics With the Combination of Improved Targeting, Therapeutic Effects, and Molecular Imaging. Frontiers in Bioengineering and Biotechnology, 2020, 8, 570490.	4.1	8
17	Chemokine releasing particle implants for trapping circulating prostate cancer cells. Scientific Reports, 2020, 10, 4433.	3.3	4
18	Validation of Hyponatremia as a Prognostic Predictor in Multiregional Upper Tract Urothelial Carcinoma. Journal of Clinical Medicine, 2020, 9, 1218.	2.4	5

#	Article	IF	Citations
19	The role of extracellular vesicles in prostate cancer with clinical applications. Endocrine-Related Cancer, 2020, 27, R133-R144.	3.1	12
20	IFN \hat{I}^3 -Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Research, 2019, 79, 1098-1112.	0.9	63
21	Future Aspects of CDK5 in Prostate Cancer: From Pathogenesis to Therapeutic Implications. International Journal of Molecular Sciences, 2019, 20, 3881.	4.1	17
22	A nanodroplet cell processing platform facilitating drug synergy evaluations for anti-cancer treatments. Scientific Reports, 2019, 9, 10120.	3.3	7
23	Development of 3D Lymph Node Mimetic for Studying Prostate Cancer Metastasis. Advanced Biology, 2019, 3, 1900019.	3.0	4
24	Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Research, 2019, 47, 11623-11636.	14.5	30
25	The paracrine induction of prostate cancer progression by caveolin-1. Cell Death and Disease, 2019, 10, 834.	6.3	41
26	The roles and mechanism of IFIT5 in bladder cancer epithelial–mesenchymal transition and progression. Cell Death and Disease, 2019, 10, 437.	6.3	21
27	Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene, 2019, 38, 5580-5598.	5.9	33
28	Downregulation of Human DAB2IP Gene Expression in Renal Cell Carcinoma Results in Resistance to lonizing Radiation. Clinical Cancer Research, 2019, 25, 4542-4551.	7.0	19
29	Arecoline Promotes Migration of A549 Lung Cancer Cells through Activating the EGFR/Src/FAK Pathway. Toxins, 2019, 11, 185.	3.4	22
30	Antrocin Sensitizes Prostate Cancer Cells to Radiotherapy through Inhibiting PI3K/AKT and MAPK Signaling Pathways. Cancers, 2019, 11, 34.	3.7	37
31	The regulatory pathways leading to stem-like cells underlie prostate cancer progression. Asian Journal of Andrology, 2019, 21, 233.	1.6	19
32	Interferon-induced IFIT5 promotes epithelial-to-mesenchymal transition leading to renal cancer invasion. American Journal of Clinical and Experimental Urology, 2019, 7, 31-45.	0.4	11
33	The dysfunctional lipids in prostate cancer. American Journal of Clinical and Experimental Urology, 2019, 7, 273-280.	0.4	11
34	HIF-1α promotes ZEB1 expression and EMT in a human bladder cancer lung metastasis animal model. Oncology Letters, 2018, 15, 3482-3489.	1.8	22
35	RASAL2 inhibits tumor angiogenesis via p-AKT/ETS1 signaling in bladder cancer. Cellular Signalling, 2018, 48, 38-44.	3.6	20
36	The expression and function of RASAL2 in renal cell carcinoma angiogenesis. Cell Death and Disease, 2018, 9, 881.	6.3	22

#	Article	IF	Citations
37	Bombesin functionalized ⁶⁴ Cu-copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer. Nanomedicine, 2018, 13, 1695-1705.	3.3	23
38	Simvastatin Sensitizes Radioresistant Prostate Cancer Cells by Compromising DNA Double-Strand Break Repair. Frontiers in Pharmacology, 2018, 9, 600.	3.5	24
39	Exosomes in cancer development and clinical applications. Cancer Science, 2018, 109, 2364-2374.	3.9	271
40	AKR1C3, a crucial androgenic enzyme in prostate cancer, promotes epithelial-mesenchymal transition and metastasis through activating ERK signaling. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 472.e11-472.e20.	1.6	32
41	Induction of neuroendocrine differentiation in castration resistant prostate cancer cells by adipocyte differentiation-related protein (ADRP) delivered by exosomes. Cancer Letters, 2017, 391, 74-82.	7.2	29
42	RASAL2, a RAS GTPase-activating protein, inhibits stemness and epithelial–mesenchymal transition via MAPK/SOX2 pathway in bladder cancer. Cell Death and Disease, 2017, 8, e2600-e2600.	6.3	38
43	Targeting 3-phosphoinositide-dependent protein kinase 1 associated with drug-resistant renal cell carcinoma using new oridonin analogs. Cell Death and Disease, 2017, 8, e2701-e2701.	6.3	23
44	Disrupting Androgen Receptor Signaling Induces Snail-Mediated Epithelial–Mesenchymal Plasticity in Prostate Cancer. Cancer Research, 2017, 77, 3101-3112.	0.9	68
45	Developing new targeting strategy for androgen receptor variants in castration resistant prostate cancer. International Journal of Cancer, 2017, 141, 2121-2130.	5.1	25
46	The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression. International Journal of Molecular Sciences, 2017, 18, 2079.	4.1	92
47	Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy. Frontiers in Cellular and Infection Microbiology, 2017, 7, 223.	3.9	21
48	Sensitization of Radioresistant Prostate Cancer Cells by Resveratrol Isolated from Arachis hypogaea Stems. PLoS ONE, 2017, 12, e0169204.	2.5	32
49	The network of DAB2IP-miR-138 in regulating drug resistance of renal cell carcinoma associated with stem-like phenotypes. Oncotarget, 2017, 8, 66975-66986.	1.8	18
50	Targeting XBP1-mediated \hat{l}^2 -catenin expression associated with bladder cancer with newly synthetic Oridonin analogues. Oncotarget, 2016, 7, 56842-56854.	1.8	24
51	Molecular Mechanisms and Potential Clinical Applications of Campylobacter jejuni Cytolethal Distending Toxin. Frontiers in Cellular and Infection Microbiology, 2016, 6, 9.	3.9	44
52	Cdk5 Directly Targets Nuclear p21CIP1 and Promotes Cancer Cell Growth. Cancer Research, 2016, 76, 6888-6900.	0.9	22
53	Tumor suppressor protein DAB2IP participates in chromosomal stability maintenance through activating spindle assembly checkpoint and stabilizing kinetochore-microtubule attachments. Nucleic Acids Research, 2016, 44, 8842-8854.	14.5	18
54	The evolving landscape of prostate cancer stem cell: Therapeutic implications and future challenges. Asian Journal of Urology, 2016, 3, 203-210.	1.2	16

#	Article	IF	Citations
55	DAB2IP regulates EMT and metastasis of prostate cancer through targeting PROX1 transcription and destabilizing HIF1α protein. Cellular Signalling, 2016, 28, 1623-1630.	3.6	20
56	Nanoparticle Targeting CD44-Positive Cancer Cells for Site-Specific Drug Delivery in Prostate Cancer Therapy. ACS Applied Materials & Drug Loterfaces, 2016, 8, 30722-30734.	8.0	74
57	Non-canonical GLI1/2 activation by PI3K/AKT signaling in renal cell carcinoma: A novel potential therapeutic target. Cancer Letters, 2016, 370, 313-323.	7.2	85
58	Targeting Cancer Stem Cells in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 670-679.	7.0	75
59	DAB2IP in cancer. Oncotarget, 2016, 7, 3766-3776.	1.8	50
60	Validation of DAB2IP methylation and its relative significance in predicting outcome in renal cell carcinoma. Oncotarget, 2016, 7, 31508-31519.	1.8	22
61	Pretreatment biopsy analysis of DAB 2 IP identifies subpopulation of highâ€risk prostate cancer patients with worse survival following radiation therapy. Cancer Medicine, 2015, 4, 1844-1852.	2.8	7
62	MicroRNA-145 Modulates Tumor Sensitivity to Radiation in Prostate Cancer. Radiation Research, 2015, 184, 630.	1.5	46
63	A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Letters, 2015, 365, 156-165.	7.2	68
64	The efficacy of immediate versus delayed antibiotic administration on bacterial growth and biofilm production of selected strains of uropathogenic Escherichia coli and Pseudomonas aeruginosa. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2015, 41, 67-77.	1.5	9
65	Click-Chemistry Strategy for Labeling Antibodies with Copper-64 via a Cross-Bridged Tetraazamacrocyclic Chelator Scaffold. Bioconjugate Chemistry, 2015, 26, 782-789.	3.6	18
66	DAB2IP regulates the chemoresistance to pirarubicin and tumor recurrence of non-muscle invasive bladder cancer through STAT3/Twist1/P-glycoprotein signaling. Cellular Signalling, 2015, 27, 2515-2523.	3.6	28
67	A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma. Nature Communications, 2015, 6, 8699.	12.8	99
68	KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes. Chemistry and Biology, 2015, 22, 1185-1196.	6.0	66
69	Dependence of Two-Photon eGFP Bleaching on Femtosecond Pulse Spectral Amplitude and Phase. Journal of Fluorescence, 2015, 25, 1775-1785.	2.5	7
70	Polymeric nanoparticles for targeted radiosensitization of prostate cancer cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 1632-1639.	4.0	27
71	Inhibiting bladder tumor growth with a cell penetrating R11 peptide derived from the p53 C-terminus. Oncotarget, 2015, 6, 37782-37791.	1.8	15

72

#	Article	IF	CITATIONS
73	Development of chitosan/heparin nanoparticle-encapsulated cytolethal distending toxin for gastric cancer therapy. Nanomedicine, 2014, 9, 803-817.	3.3	21
74	Electrophysiological analysis of biopsy samples using elasticity as an inherent cell marker for cancer detection. Analytical Methods, 2014, 6, 7166-7174.	2.7	23
75	Reciprocal Regulation of Hypoxia-Inducible Factor 2α and GLI1 Expression Associated With the Radioresistance of Renal Cell Carcinoma. International Journal of Radiation Oncology Biology Physics, 2014, 90, 942-951.	0.8	32
76	DOC-2/DAB2 Interacting Protein Status in High-Risk Prostate Cancer Correlates With Outcome for Patients Treated With Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 89, 729-735.	0.8	6
77	2′-Hydroxyflavanone inhibits prostate tumor growth through inactivation of AKT/STAT3 signaling and induction of cell apoptosis. Oncology Reports, 2014, 32, 131-138.	2.6	21
78	Sensitization of radio-resistant prostate cancer cells with a unique cytolethal distending toxin. Oncotarget, 2014, 5, 5523-5534.	1.8	21
79	The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget, 2014, 5, 6425-6436.	1.8	35
80	The Mechanism of DAB2IP in Chemoresistance of Prostate Cancer Cells. Clinical Cancer Research, 2013, 19, 4740-4749.	7.0	61
81	Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials, 2013, 34, 3618-3625.	11.4	76
82	Peptidomimetic targeting of critical androgen receptor–coregulator interactions in prostate cancer. Nature Communications, 2013, 4, 1923.	12.8	125
83	Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser ⁷²⁷ on STAT3 in prostate cancer cells. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E975-E986.	3.5	51
84	The role of microRNAs in prostate cancer progression. Translational Andrology and Urology, 2013, 2, 228-41.	1.4	18
85	Nkx3.1 Functions as Para-transcription Factor to Regulate Gene Expression and Cell Proliferation in Non-cell Autonomous Manner. Journal of Biological Chemistry, 2012, 287, 17248-17256.	3.4	10
86	PI3K/Akt to GSK3 \hat{l}^2/\hat{l}^2 -catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription. Cellular Signalling, 2012, 24, 2273-2282.	3.6	86
87	Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog–Gli1 pathway. Cancer Letters, 2012, 323, 48-57.	7.2	98
88	DAB2IP Regulates Autophagy in Prostate Cancer in Response to Combined Treatment of Radiation and a DNA-PKcs Inhibitor. Neoplasia, 2012, 14, 1203-IN36.	5.3	51
89	Analysis of oligo-arginine cell-permeable peptides uptake by prostate cells. Amino Acids, 2012, 42, 1253-1260.	2.7	19
90	R11, a novel cellâ€permeable peptide, as an intravesical delivery vehicle. BJU International, 2011, 108, 1666-1671.	2.5	19

#	Article	IF	Citations
91	A cell permeable peptide analog as a potential-specific PET imaging probe for prostate cancer detection. Amino Acids, 2011, 41, 1093-1101.	2.7	21
92	Evidence of epithelial to mesenchymal transition associated with increased tumorigenic potential in an immortalized normal prostate epithelial cell line. Prostate, 2011, 71, 626-636.	2.3	7
93	Upregulation of <i>TRAG3</i> gene in urothelial carcinoma of the bladder. International Journal of Cancer, 2011, 128, 2823-2832.	5.1	18
94	Cholesterol Depletion Reduces Entry of Campylobacter jejuni Cytolethal Distending Toxin and Attenuates Intoxication of Host Cells. Infection and Immunity, 2011, 79, 3563-3575.	2.2	43
95	Downregulation of Human DAB2IP Gene Expression in Prostate Cancer Cells Results in Resistance to lonizing Radiation. Cancer Research, 2010, 70, 2829-2839.	0.9	70
96	Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2485-2490.	7.1	215
97	Demonstration of Cancer Cell Migration Using a Novel Microfluidic Device. Journal of Nanotechnology in Engineering and Medicine, 2010, 1 , .	0.8	5
98	A Microfluidic Assay for Metastasis Potential Analysis. , 2010, , .		0
99	Anti-Cancer Strategy of Transitional Cell Carcinoma of Bladder Based on Induction of Different Types of Programmed Cell Deaths. , 2009, , 25-50.		3
100	Caveolinâ€1 secreting LNCaP cells induce tumor growth of caveolinâ€1 negative LNCaP cells <i>in vivo</i> lnternational Journal of Cancer, 2008, 122, 520-525.	5.1	43
101	Efficient Solid-Phase Synthesis of FK228 Analogues as Potent Antitumoral Agents. Journal of Medicinal Chemistry, 2008, 51, 6639-6641.	6.4	31
102	Effect of <i>Trans</i> -2,3-Dimethoxycinnamoyl Azide on Enhancing Antitumor Activity of Romidepsin on Human Bladder Cancer. Clinical Cancer Research, 2008, 14, 1200-1207.	7.0	13
103	The use of histone deacetylase inhibitor FK228 and DNA hypomethylation agent 5-azacytidine in human bladder cancer therapy. International Journal of Cancer, 2007, 120, 1795-1802.	5.1	45
104	Inhibition of Mitogen-Elicited Signal Transduction and Growth in Prostate Cancer with a Small Peptide Derived from the Functional Domain of DOC-2/DAB2 Delivered by a Unique Vehicle. Cancer Research, 2006, 66, 8954-8958.	0.9	26
105	EPIGENETICS IN PROSTATE CANCER. , 2005, , 213-242.		0
106	The Role of DOC-2/DAB2 in Modulating Androgen Receptor–Mediated Cell Growth via the Nongenomic c-Src–Mediated Pathway in Normal Prostatic Epithelium and Cancer. Cancer Research, 2005, 65, 9906-9913.	0.9	58
107	Molecular imaging in prostate cancer. Journal of Cellular Biochemistry, 2003, 90, 473-483.	2.6	30
108	Epigenetic Regulation of a Novel Tumor Suppressor Gene (hDAB2IP) in Prostate Cancer Cell Lines. Journal of Biological Chemistry, 2003, 278, 3121-3130.	3.4	121

#	ARTICLE	IF	CITATION
109	The Mechanism of Growth-inhibitory Effect of DOC-2/DAB2 in Prostate Cancer. Journal of Biological Chemistry, 2002, 277, 12622-12631.	3.4	133
110	Cell Adhesion Proteins As Tumor Suppressors. Journal of Urology, 2002, 167, 1836-1843.	0.4	114
111	Signal transduction targets in androgen-independent prostate cancer. Cancer and Metastasis Reviews, 2001, 20, 351-362.	5.9	21
112	THE GROWTH INHIBITORY EFFECT OF p21 ADENOVIRUS ON HUMAN BLADDER CANCER CELLS. Journal of Urology, 2000, 163, 1033-1038.	0.4	35
113	Induction of apoptosis and G2/M cell cycle arrest by DCC. Oncogene, 1999, 18, 2747-2754.	5.9	63
114	Structural analysis of the C-CAM1 molecule for its tumor suppression function in human prostate cancer. , 1999, 41, 31-38.		9
115	Regulation of Rat DOC-2 Gene during Castration-Induced Rat Ventral Prostate Degeneration and Its Growth Inhibitory Function in Human Prostatic Carcinoma Cells*. Endocrinology, 1998, 139, 3542-3553.	2.8	95