Jer-Tsong Hsieh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3314766/publications.pdf Version: 2024-02-01

		109321	138484
115	4,214	35	58
papers	citations	h-index	g-index
	117		6.400
11/	11/	11/	6429
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Exosomes in cancer development and clinical applications. Cancer Science, 2018, 109, 2364-2374.	3.9	271
2	Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2485-2490.	7.1	215
3	The Mechanism of Growth-inhibitory Effect of DOC-2/DAB2 in Prostate Cancer. Journal of Biological Chemistry, 2002, 277, 12622-12631.	3.4	133
4	Peptidomimetic targeting of critical androgen receptor–coregulator interactions in prostate cancer. Nature Communications, 2013, 4, 1923.	12.8	125
5	Epigenetic Regulation of a Novel Tumor Suppressor Gene (hDAB2IP) in Prostate Cancer Cell Lines. Journal of Biological Chemistry, 2003, 278, 3121-3130.	3.4	121
6	Cell Adhesion Proteins As Tumor Suppressors. Journal of Urology, 2002, 167, 1836-1843.	0.4	114
7	A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma. Nature Communications, 2015, 6, 8699.	12.8	99
8	Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog–Gli1 pathway. Cancer Letters, 2012, 323, 48-57.	7.2	98
9	Regulation of Rat DOC-2 Gene during Castration-Induced Rat Ventral Prostate Degeneration and Its Growth Inhibitory Function in Human Prostatic Carcinoma Cells*. Endocrinology, 1998, 139, 3542-3553.	2.8	95
10	The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression. International Journal of Molecular Sciences, 2017, 18, 2079.	4.1	92
11	PI3K/Akt to GSK3β/β-catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription. Cellular Signalling, 2012, 24, 2273-2282.	3.6	86
12	Non-canonical GL11/2 activation by PI3K/AKT signaling in renal cell carcinoma: A novel potential therapeutic target. Cancer Letters, 2016, 370, 313-323.	7.2	85
13	Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials, 2013, 34, 3618-3625.	11.4	76
14	Targeting Cancer Stem Cells in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 670-679.	7.0	75
15	Nanoparticle Targeting CD44-Positive Cancer Cells for Site-Specific Drug Delivery in Prostate Cancer Therapy. ACS Applied Materials & Interfaces, 2016, 8, 30722-30734.	8.0	74
16	Downregulation of Human DAB2IP Gene Expression in Prostate Cancer Cells Results in Resistance to Ionizing Radiation. Cancer Research, 2010, 70, 2829-2839.	0.9	70
17	A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Letters, 2015, 365, 156-165.	7.2	68
18	Disrupting Androgen Receptor Signaling Induces Snail-Mediated Epithelial–Mesenchymal Plasticity in Prostate Cancer. Cancer Research, 2017, 77, 3101-3112.	0.9	68

#	Article	IF	CITATIONS
19	KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes. Chemistry and Biology, 2015, 22, 1185-1196.	6.0	66
20	Induction of apoptosis and G2/M cell cycle arrest by DCC. Oncogene, 1999, 18, 2747-2754.	5.9	63
21	IFNÎ ³ -Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Research, 2019, 79, 1098-1112.	0.9	63
22	The Mechanism of DAB2IP in Chemoresistance of Prostate Cancer Cells. Clinical Cancer Research, 2013, 19, 4740-4749.	7.0	61
23	The Role of DOC-2/DAB2 in Modulating Androgen Receptor–Mediated Cell Growth via the Nongenomic c-Src–Mediated Pathway in Normal Prostatic Epithelium and Cancer. Cancer Research, 2005, 65, 9906-9913.	0.9	58
24	Wnt/β-catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma. Cell Death and Disease, 2020, 11, 771.	6.3	57
25	DAB2IP Regulates Autophagy in Prostate Cancer in Response to Combined Treatment of Radiation and a DNA-PKcs Inhibitor. Neoplasia, 2012, 14, 1203-IN36.	5.3	51
26	Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser ⁷²⁷ on STAT3 in prostate cancer cells. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E975-E986.	3.5	51
27	DAB2IP in cancer. Oncotarget, 2016, 7, 3766-3776.	1.8	50
28	MicroRNA-145 Modulates Tumor Sensitivity to Radiation in Prostate Cancer. Radiation Research, 2015, 184, 630.	1.5	46
29	The use of histone deacetylase inhibitor FK228 and DNA hypomethylation agent 5-azacytidine in human bladder cancer therapy. International Journal of Cancer, 2007, 120, 1795-1802.	5.1	45
30	Molecular Mechanisms and Potential Clinical Applications of Campylobacter jejuni Cytolethal Distending Toxin. Frontiers in Cellular and Infection Microbiology, 2016, 6, 9.	3.9	44
31	Caveolinâ€1 secreting LNCaP cells induce tumor growth of caveolinâ€1 negative LNCaP cells <i>in vivo</i> . International Journal of Cancer, 2008, 122, 520-525.	5.1	43
32	Cholesterol Depletion Reduces Entry of Campylobacter jejuni Cytolethal Distending Toxin and Attenuates Intoxication of Host Cells. Infection and Immunity, 2011, 79, 3563-3575.	2.2	43
33	The paracrine induction of prostate cancer progression by caveolin-1. Cell Death and Disease, 2019, 10, 834.	6.3	41
34	RASAL2, a RAS GTPase-activating protein, inhibits stemness and epithelial–mesenchymal transition via MAPK/SOX2 pathway in bladder cancer. Cell Death and Disease, 2017, 8, e2600-e2600.	6.3	38
35	Antrocin Sensitizes Prostate Cancer Cells to Radiotherapy through Inhibiting PI3K/AKT and MAPK Signaling Pathways. Cancers, 2019, 11, 34.	3.7	37
36	THE GROWTH INHIBITORY EFFECT OF p21 ADENOVIRUS ON HUMAN BLADDER CANCER CELLS. Journal of Urology, 2000, 163, 1033-1038.	0.4	35

#	Article	IF	CITATIONS
37	The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget, 2014, 5, 6425-6436.	1.8	35
38	Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene, 2019, 38, 5580-5598.	5.9	33
39	Reciprocal Regulation of Hypoxia-Inducible Factor 2α and GL11 Expression Associated With the Radioresistance of Renal Cell Carcinoma. International Journal of Radiation Oncology Biology Physics, 2014, 90, 942-951.	0.8	32
40	AKR1C3, a crucial androgenic enzyme in prostate cancer, promotes epithelial-mesenchymal transition and metastasis through activating ERK signaling. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 472.e11-472.e20.	1.6	32
41	Sensitization of Radioresistant Prostate Cancer Cells by Resveratrol Isolated from Arachis hypogaea Stems. PLoS ONE, 2017, 12, e0169204.	2.5	32
42	Efficient Solid-Phase Synthesis of FK228 Analogues as Potent Antitumoral Agents. Journal of Medicinal Chemistry, 2008, 51, 6639-6641.	6.4	31
43	Molecular imaging in prostate cancer. Journal of Cellular Biochemistry, 2003, 90, 473-483.	2.6	30
44	Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Research, 2019, 47, 11623-11636.	14.5	30
45	Induction of neuroendocrine differentiation in castration resistant prostate cancer cells by adipocyte differentiation-related protein (ADRP) delivered by exosomes. Cancer Letters, 2017, 391, 74-82.	7.2	29
46	Thermo-responsive Fluorescent Nanoparticles for Multimodal Imaging and Treatment of Cancers. Nanotheranostics, 2020, 4, 1-13.	5.2	29
47	SPARC is a key mediator of TGFâ€Î²â€induced renal cancer metastasis. Journal of Cellular Physiology, 2021, 236, 1926-1938.	4.1	29
48	DAB2IP regulates the chemoresistance to pirarubicin and tumor recurrence of non-muscle invasive bladder cancer through STAT3/Twist1/P-glycoprotein signaling. Cellular Signalling, 2015, 27, 2515-2523.	3.6	28
49	Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nature Cell Biology, 2020, 22, 1130-1142.	10.3	28
50	Polymeric nanoparticles for targeted radiosensitization of prostate cancer cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 1632-1639.	4.0	27
51	Inhibition of Mitogen-Elicited Signal Transduction and Growth in Prostate Cancer with a Small Peptide Derived from the Functional Domain of DOC-2/DAB2 Delivered by a Unique Vehicle. Cancer Research, 2006, 66, 8954-8958.	0.9	26
52	Developing new targeting strategy for androgen receptor variants in castration resistant prostate cancer. International Journal of Cancer, 2017, 141, 2121-2130.	5.1	25
53	Targeting XBP1-mediated β-catenin expression associated with bladder cancer with newly synthetic Oridonin analogues. Oncotarget, 2016, 7, 56842-56854.	1.8	24
54	Simvastatin Sensitizes Radioresistant Prostate Cancer Cells by Compromising DNA Double-Strand Break Repair. Frontiers in Pharmacology, 2018, 9, 600.	3.5	24

#	Article	IF	CITATIONS
55	Electrophysiological analysis of biopsy samples using elasticity as an inherent cell marker for cancer detection. Analytical Methods, 2014, 6, 7166-7174.	2.7	23
56	Targeting 3-phosphoinositide-dependent protein kinase 1 associated with drug-resistant renal cell carcinoma using new oridonin analogs. Cell Death and Disease, 2017, 8, e2701-e2701.	6.3	23
57	Bombesin functionalized ⁶⁴ Cu-copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer. Nanomedicine, 2018, 13, 1695-1705.	3.3	23
58	Hyperfluorescence Imaging of Kidney Cancer Enabled by Renal Secretion Pathway Dependent Efflux Transport. Angewandte Chemie - International Edition, 2021, 60, 351-359.	13.8	23
59	Cdk5 Directly Targets Nuclear p21ClP1 and Promotes Cancer Cell Growth. Cancer Research, 2016, 76, 6888-6900.	0.9	22
60	HIF-1α promotes ZEB1 expression and EMT in a human bladder cancer lung metastasis animal model. Oncology Letters, 2018, 15, 3482-3489.	1.8	22
61	The expression and function of RASAL2 in renal cell carcinoma angiogenesis. Cell Death and Disease, 2018, 9, 881.	6.3	22
62	Arecoline Promotes Migration of A549 Lung Cancer Cells through Activating the EGFR/Src/FAK Pathway. Toxins, 2019, 11, 185.	3.4	22
63	Validation of DAB2IP methylation and its relative significance in predicting outcome in renal cell carcinoma. Oncotarget, 2016, 7, 31508-31519.	1.8	22
64	Signal transduction targets in androgen-independent prostate cancer. Cancer and Metastasis Reviews, 2001, 20, 351-362.	5.9	21
65	A cell permeable peptide analog as a potential-specific PET imaging probe for prostate cancer detection. Amino Acids, 2011, 41, 1093-1101.	2.7	21
66	Development of chitosan/heparin nanoparticle-encapsulated cytolethal distending toxin for gastric cancer therapy. Nanomedicine, 2014, 9, 803-817.	3.3	21
67	2′-Hydroxyflavanone inhibits prostate tumor growth through inactivation of AKT/STAT3 signaling and induction of cell apoptosis. Oncology Reports, 2014, 32, 131-138.	2.6	21
68	Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy. Frontiers in Cellular and Infection Microbiology, 2017, 7, 223.	3.9	21
69	The roles and mechanism of IFIT5 in bladder cancer epithelial–mesenchymal transition and progression. Cell Death and Disease, 2019, 10, 437.	6.3	21
70	Sensitization of radio-resistant prostate cancer cells with a unique cytolethal distending toxin. Oncotarget, 2014, 5, 5523-5534.	1.8	21
71	DAB2IP regulates EMT and metastasis of prostate cancer through targeting PROX1 transcription and destabilizing HIF11± protein. Cellular Signalling, 2016, 28, 1623-1630.	3.6	20
72	RASAL2 inhibits tumor angiogenesis via p-AKT/ETS1 signaling in bladder cancer. Cellular Signalling, 2018, 48, 38-44.	3.6	20

Jer-Tsong Hsieh

#	Article	IF	CITATIONS
73	R11, a novel cellâ€permeable peptide, as an intravesical delivery vehicle. BJU International, 2011, 108, 1666-1671.	2.5	19
74	Analysis of oligo-arginine cell-permeable peptides uptake by prostate cells. Amino Acids, 2012, 42, 1253-1260.	2.7	19
75	Downregulation of Human DAB2IP Gene Expression in Renal Cell Carcinoma Results in Resistance to Ionizing Radiation. Clinical Cancer Research, 2019, 25, 4542-4551.	7.0	19
76	The regulatory pathways leading to stem-like cells underlie prostate cancer progression. Asian Journal of Andrology, 2019, 21, 233.	1.6	19
77	Upregulation of <i>TRAG3</i> gene in urothelial carcinoma of the bladder. International Journal of Cancer, 2011, 128, 2823-2832.	5.1	18

78

#	Article	IF	CITATIONS
91	Nkx3.1 Functions as Para-transcription Factor to Regulate Gene Expression and Cell Proliferation in Non-cell Autonomous Manner. Journal of Biological Chemistry, 2012, 287, 17248-17256.	3.4	10
92	Validation of SV2A-Targeted PET Imaging for Noninvasive Assessment of Neuroendocrine Differentiation in Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 13085.	4.1	10
93	Structural analysis of the C-CAM1 molecule for its tumor suppression function in human prostate cancer. , 1999, 41, 31-38.		9
94	The efficacy of immediate versus delayed antibiotic administration on bacterial growth and biofilm production of selected strains of uropathogenic Escherichia coli and Pseudomonas aeruginosa. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2015, 41, 67-77.	1.5	9
95	Nanotheranostics With the Combination of Improved Targeting, Therapeutic Effects, and Molecular Imaging. Frontiers in Bioengineering and Biotechnology, 2020, 8, 570490.	4.1	8
96	The central role of Sphingosine kinase 1 in the development of neuroendocrine prostate cancer (NEPC): A new targeted therapy of NEPC. Clinical and Translational Medicine, 2022, 12, e695.	4.0	8
97	Evidence of epithelial to mesenchymal transition associated with increased tumorigenic potential in an immortalized normal prostate epithelial cell line. Prostate, 2011, 71, 626-636.	2.3	7
98	Pretreatment biopsy analysis of DAB 2 IP identifies subpopulation of highâ€risk prostate cancer patients with worse survival following radiation therapy. Cancer Medicine, 2015, 4, 1844-1852.	2.8	7
99	Dependence of Two-Photon eCFP Bleaching on Femtosecond Pulse Spectral Amplitude and Phase. Journal of Fluorescence, 2015, 25, 1775-1785.	2.5	7
100	A nanodroplet cell processing platform facilitating drug synergy evaluations for anti-cancer treatments. Scientific Reports, 2019, 9, 10120.	3.3	7
101	Bacterial Genotoxin-Coated Nanoparticles for Radiotherapy Sensitization in Prostate Cancer. Biomedicines, 2021, 9, 151.	3.2	7
102	RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation. Biomolecules, 2021, 11, 860.	4.0	7
103	Mitotic phosphorylation of tumor suppressor DAB2IP maintains spindle assembly checkpoint and chromosomal stability through activating PLK1-Mps1 signal pathway and stabilizing mitotic checkpoint complex. Oncogene, 2022, 41, 489-501.	5.9	7
104	DOC-2/DAB2 Interacting Protein Status in High-Risk Prostate Cancer Correlates With Outcome for Patients Treated With Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 89, 729-735.	0.8	6
105	PTRF independently predicts progression and survival in multiracial upper tract urothelial carcinoma following radical nephroureterectomy. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 496-505.	1.6	6
106	Demonstration of Cancer Cell Migration Using a Novel Microfluidic Device. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	5
107	Validation of Hyponatremia as a Prognostic Predictor in Multiregional Upper Tract Urothelial Carcinoma. Journal of Clinical Medicine, 2020, 9, 1218.	2.4	5
108	Development of 3D Lymph Node Mimetic for Studying Prostate Cancer Metastasis. Advanced Biology, 2019, 3, 1900019.	3.0	4

Jer-Tsong Hsieh

#	Article	IF	CITATIONS
109	Chemokine releasing particle implants for trapping circulating prostate cancer cells. Scientific Reports, 2020, 10, 4433.	3.3	4
110	Quantitative measurements of IR780 in formulations and tissues. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113780.	2.8	3
111	DAB2IP modulates primary cilia formation associated with renal tumorigenesis. Neoplasia, 2021, 23, 169-180.	5.3	3
112	Anti-Cancer Strategy of Transitional Cell Carcinoma of Bladder Based on Induction of Different Types of Programmed Cell Deaths. , 2009, , 25-50.		3
113	Interethnic differences in the impact of body mass index on upper tract urothelial carcinoma following radical nephroureterectomy. World Journal of Urology, 2021, 39, 491-500.	2.2	2
114	EPIGENETICS IN PROSTATE CANCER. , 2005, , 213-242.		0
115	A Microfluidic Assay for Metastasis Potential Analysis. , 2010, , .		0