
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/331436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and dynamics of G protein-coupled receptor–bound ghrelin reveal the critical role of the octanoyl chain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17525-17530.	7.1	53
2	Structure and dynamics of dynorphin peptide and its receptor. Vitamins and Hormones, 2019, 111, 17-47.	1.7	18
3	A protein nanocontainer targeting epithelial cancers: rational engineering, biochemical characterization, drug loading and cell delivery. Nanoscale, 2019, 11, 3248-3260.	5.6	6
4	The conical shape of DIM lipids promotes <i>Mycobacterium tuberculosis</i> infection of macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25649-25658.	7.1	49
5	Small molecule–based targeting of TTD-A dimerization to control TFIIH transcriptional activity represents a potential strategy for anticancer therapy. Journal of Biological Chemistry, 2018, 293, 14974-14988.	3.4	12
6	Local and Global Dynamics in <i>Klebsiella pneumoniae</i> Outer Membrane Protein a in Lipid Bilayers Probed at Atomic Resolution. Journal of the American Chemical Society, 2017, 139, 1590-1597.	13.7	41
7	Identification of specific posttranslational <i>O</i> -mycoloylations mediating protein targeting to the mycomembrane. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4231-4236.	7.1	24
8	The One-carbon Carrier Methylofuran from Methylobacterium extorquens AM1 Contains a Large Number of α- and γ-Linked Glutamic Acid Residues. Journal of Biological Chemistry, 2016, 291, 9042-9051.	3.4	8
9	The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization. Journal of Structural Biology, 2016, 194, 337-346.	2.8	10
10	NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11852-11857.	7.1	80
11	Search for the Most â€~primitive' Membranes and Their Reinforcers: A Review of the Polyprenyl Phosphates Theory. Origins of Life and Evolution of Biospheres, 2014, 44, 197-208.	1.9	21
12	Cholesterol-Gpcr (B2AR) Interaction in Lipidic Cubic Phase: Insight fromÂ13C NMR. Biophysical Journal, 2014, 106, 715a.	0.5	0
13	Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 626-636.	2.4	20
14	The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Molecular Medicine, 2014, 6, 1328-1346.	6.9	96
15	Two Classes of Cholesterol Binding Sites for the β 2 AR Revealed byÂThermostability and NMR. Biophysical Journal, 2014, 107, 2305-2312.	0.5	50
16	NMR Analyses of the Structure and Dynamics of Klebsiella Pneumoniae OMPA Domains and Full Length Protein. Biophysical Journal, 2014, 106, 193a.	0.5	0
17	NMR studies of a new family of DNA binding proteins: the THAP proteins. Journal of Biomolecular NMR, 2013, 56, 3-15.	2.8	23
18	Cord factor (trehalose 6,6′-dimycolate) forms fully stable and non-permeable lipid bilayers required for a functional outer membrane. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2173-2181.	2.6	11

#	Article	IF	CITATIONS
19	NMR localization of the Oâ€mycoloylation on PorH, a channel forming peptide from <i>Corynebacterium glutamicum</i> . FEBS Letters, 2013, 587, 3687-3691.	2.8	10
20	Engineering transglycosidase activity into a GH51 α-l-arabinofuranosidase. New Biotechnology, 2013, 30, 536-544.	4.4	29
21	Hydrogen Bonding of Cholesterol in the Lipidic Cubic Phase. Langmuir, 2013, 29, 8031-8038.	3.5	35
22	Virtual and Biophysical Screening Targeting the γ-Tubulin Complex – A New Target for the Inhibition of Microtubule Nucleation. PLoS ONE, 2013, 8, e63908.	2.5	13
23	Towards the classification of DYT6 dystonia mutants in the DNA-binding domain of THAP1. Nucleic Acids Research, 2012, 40, 9927-9940.	14.5	21
24	Functional roles of H98 and W99 and β2α2 loop dynamics in the αâ€ <scp>l</scp> â€arabinofuranosidase from <i>Thermobacillus xylanilyticus</i> . FEBS Journal, 2012, 279, 3598-3611.	4.7	15
25	Dynamics of Klebsiella pneumoniae OmpA transmembrane domain: The four extracellular loops display restricted motion behavior in micelles and in lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2344-2353.	2.6	4
26	The Monoolein-Cholesterol Cubic Phase: Characterization by NMR Spectroscopy. Biophysical Journal, 2012, 102, 390a.	0.5	0
27	The Transmembrane Protein KpOmpA Anchoring the Outer Membrane of Klebsiella pneumoniae Unfolds and Refolds in Response to Tensile Load. Structure, 2012, 20, 121-127.	3.3	38
28	NMR-Based Structural Glycomics for High-Throughput Screening of Carbohydrate-Active Enzyme Specificity. Analytical Chemistry, 2011, 83, 1202-1206.	6.5	28
29	Nuclear magnetic resonance analysis of protein–DNA interactions. Journal of the Royal Society Interface, 2011, 8, 1065-1078.	3.4	31
30	Functional Expression of the PorAH Channel from Corynebacterium glutamicum in Cell-free Expression Systems. Journal of Biological Chemistry, 2011, 286, 32525-32532.	3.4	27
31	The N-Terminal End Truncated Mu-Opioid Receptor: from Expression to Circular Dichroism Analysis. Applied Biochemistry and Biotechnology, 2010, 160, 2175-2186.	2.9	9
32	Order Parameters of a Transmembrane Helix in a Fluid Bilayer: Case Study of a WALP Peptide. Biophysical Journal, 2010, 98, 1864-1872.	0.5	51
33	Structural determinants of specific DNA-recognition by the THAP zinc finger. Nucleic Acids Research, 2010, 38, 3466-3476.	14.5	59
34	GATEWAYâ,,¢ technology and E. coli recombinant system produce a properly folded and functional recombinant allergen of the lipid transfer protein of apple (Mal d 3). Protein Expression and Purification, 2010, 70, 277-282.	1.3	5
35	Modelling the influence of hydrogen bond network on chemical shielding tensors description. GIAO-DFT study of WALP23 transmembrane α-helix as a test case. Physical Chemistry Chemical Physics, 2010, 12, 6999.	2.8	3
36	Solution-State NMR Spectroscopy of Membrane Proteins in Detergent Micelles: Structure of the Klebsiella pneumoniae Outer Membrane Protein A, KpOmpA. Methods in Molecular Biology, 2010, 654, 321-339.	0.9	4

#	Article	IF	CITATIONS
37	Study of the Specific Lipid Binding Properties of Aβ 11â^'22 Fragment at Endosomal pH. Langmuir, 2009, 25, 10948-10953.	3.5	6
38	Structural properties of a peptide derived from H+-V-ATPase subunit a. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1204-1212.	2.6	2
39	Solution State NMR Structure and Dynamics of KpOmpA, a 210 Residue Transmembrane Domain Possessing a High Potential for Immunological Applications. Journal of Molecular Biology, 2009, 385, 117-130.	4.2	45
40	The Full-Length Mu-Opioid Receptor: A Conformational Study by Circular Dichroism in Trifluoroethanol and Membrane-Mimetic Environments. Journal of Membrane Biology, 2008, 223, 49-57.	2.1	16
41	Structural insights on the pamoic acid and the 8 kDa domain of DNA polymerase beta complex: Towards the design of higher-affinity inhibitors. BMC Structural Biology, 2008, 8, 22.	2.3	22
42	Description of the lowâ€affinity interaction between nociceptin and the second extracellular loop of its receptor by fluorescence and NMR spectroscopies. Journal of Peptide Science, 2008, 14, 1183-1194.	1.4	6
43	Structure-Function Analysis of the THAP Zinc Finger of THAP1, a Large C2CH DNA-binding Module Linked to Rb/E2F Pathways. Journal of Biological Chemistry, 2008, 283, 4352-4363.	3.4	76
44	The Ralstonia solanacearum pathogenicity regulator HrpB induces 3-hydroxy-oxindole synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15870-15875.	7.1	28
45	Peptides as tools and drugs for immunotherapies. Journal of Peptide Science, 2007, 13, 588-602.	1.4	23
46	Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. European Biophysics Journal, 2007, 36, 919-931.	2.2	304
47	Methylobacterium extorquensAM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Letters, 2006, 580, 561-567.	2.8	36
48	Giant vesicles as an efficient intermediate for 2H NMR analyses of proteoliposomes in water suspension and in oriented lipid bilayers. Comptes Rendus Chimie, 2006, 9, 401-407.	0.5	1
49	High-resolution 13C NMR of sterols in model membrane. Comptes Rendus Chimie, 2006, 9, 393-400.	0.5	8
50	Incorporation of phytosterols in human keratinocytes. Chemistry and Physics of Lipids, 2006, 141, 216-224.	3.2	14
51	Recombinant G protein-coupled receptors from expression to renaturation: a challenge towards structure. Cellular and Molecular Life Sciences, 2006, 63, 1149-1164.	5.4	85
52	Solubilization, purification, and mass spectrometry analysis of the human mu-opioid receptor expressed in Pichia pastoris. Protein Expression and Purification, 2005, 43, 85-93.	1.3	44
53	Fusogenic Alzheimer's peptide fragment Aβ (29-42) in interaction with lipid bilayers: Secondary structure, dynamics, and specific interaction with phosphatidyl ethanolamine polar heads as revealed by solid-state NMR. Protein Science, 2005, 14, 1181-1189.	7.6	24
54	Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints. Biophysical Journal, 2005, 89, 1120-1131.	0.5	22

#	Article	IF	CITATIONS
55	Partial atomic charges of amino acids in proteins. Proteins: Structure, Function and Bioinformatics, 2004, 56, 102-109.	2.6	22
56	15NT2′ relaxation times of bacteriorhodopsin transmembrane amide nitrogens. Magnetic Resonance in Chemistry, 2004, 42, 212-217.	1.9	7
57	Understanding Sterol-Membrane Interactions Part I: Hartree-Fock versus DFT Calculations of13C and1H NMR Isotropic Chemical Shifts of Sterols in Solution and Analysis of Hydrogen-Bonding Effects. Chemistry - A European Journal, 2004, 10, 5996-6004.	3.3	24
58	Understanding Sterol-Membrane Interactions, Part II: Complete1H and13C Assignments by Solid-State NMR Spectroscopy and Determination of the Hydrogen-Bonding Partners of Cholesterol in a Lipid Bilayer. Chemistry - A European Journal, 2004, 10, 6005-6014.	3.3	42
59	Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cellular and Molecular Life Sciences, 2003, 60, 1529-1546.	5.4	214
60	Detection of natural abundance 1H–13C correlations of cholesterol in its membrane environment using a gradient enhanced HSQC experiment under high resolution magic angle spinning. Journal of Magnetic Resonance, 2003, 165, 303-308.	2.1	14
61	Optimizing Functional versus Total Expression of the Human μ-Opioid Receptor in Pichia pastoris. Protein Expression and Purification, 2002, 24, 212-220.	1.3	62
62	Green fluorescent protein as a reporter of human μ-opioid receptor overexpression and localization in the methylotrophic yeast Pichia pastoris. Journal of Biotechnology, 2002, 99, 23-39.	3.8	47
63	Generation of formate by the formyltransferase/hydrolase complex (Fhc) fromMethylobacterium extorquensAM1. FEBS Letters, 2002, 523, 133-137.	2.8	54
64	Differential binding to the α/β-tubulin dimer of vinorelbine and vinflunine revealed by nuclear magnetic resonance analyses. Biochemical Pharmacology, 2002, 64, 733-740.	4.4	7
65	Structureâ [°] antigenicity relationship studies of the central conserved region of human respiratory syncytial virus proteinâ $\in f$ G. Chemical Biology and Drug Design, 2002, 60, 271-282.	1.1	11
66	High resolution 2D correlation of cholesterol in model membrane. Journal of Magnetic Resonance, 2002, 158, 143-148.	2.1	26
67	High resolution 13C NMR spectra on oriented lipid bilayers: from quantifying the various sources of line broadening to performing 2D experiments with 0.2-0.3 ppm resolution in the carbon dimension. Journal of Biomolecular NMR, 2002, 24, 15-30.	2.8	9
68	Characterization of substance P-membrane interaction by transferred nuclear Overhauser effect. Biopolymers, 2000, 54, 297-306.	2.4	22
69	Optimisation of plant sterols incorporation in human keratinocyte plasma membrane and modulation of membrane fluidity. Chemistry and Physics of Lipids, 1999, 101, 255-265.	3.2	40
70	Heterologous expression of a deuterated membrane-integrated receptor and partial deuteration in methylotrophic yeasts. Journal of Biomolecular NMR, 1999, 14, 231-239.	2.8	34
71	Cholesterol Orientation and Dynamics in Dimyristoylphosphatidylcholine Bilayers: A Solid State Deuterium NMR Analysis. Biophysical Journal, 1999, 76, 351-359.	0.5	93
72	Plant sterols: a neutron diffraction study of sitosterol and stigmasterol in soybean phosphatidylcholine membranes. Biophysical Chemistry, 1998, 75, 45-55.	2.8	21

#	Article	IF	CITATIONS
73	Influence of Annexin V on the Structure and Dynamics of Phosphatidylcholine/Phosphatidylserine Bilayers: A Fluorescence and NMR Studyâ€. Biochemistry, 1998, 37, 1403-1410.	2.5	55
74	Structure/antigenicity relationship of cyclic and linear peptides mimicking the V3 loop of HTV2 envelope glycoprotein. Research in Virology, 1998, 149, 363-373.	0.7	1
75	Preparation of Oriented Lipid Bilayer on Ultrathin Polymers for Solid-State NMR Analyses of Peptide–Membrane Interactions. Journal of Magnetic Resonance, 1997, 124, 455-458.	2.1	21
76	Synthesis of Deuterium-Labeled Plant Sterols and Analysis of Their Side-Chain Mobility by Solid State Deuterium NMR. Journal of Organic Chemistry, 1996, 61, 4252-4257.	3.2	22
77	Composition and phase behaviour of polar lipids isolated from Spirulina maxima cells grown in a perdeuterated medium. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1284, 196-202.	2.6	7
78	Expression and pharmacological characterization of the human μ-opioid receptor in the methylotrophic yeastPichia pastoris. FEBS Letters, 1996, 394, 268-272.	2.8	52
79	Structural Analysis of the Carboxyl Terminal Peptide From Human Chorionic Gonadotropin β‧ubunit by Twoâ€Đimensional Nuclear Magnetic Resonance Spectroscopy. American Journal of Reproductive Immunology, 1996, 35, 156-162.	1.2	4
80	Studies on the Topography of Biomembranes: Regioselective Photolabelling in Vesicles with the Tandem Use of Cholesterol and a Photoactivable Transmembrane Phospholipidic Probe. Chemistry - A European Journal, 1996, 2, 129-138.	3.3	32
81	A transferred NOE study of a tricyclic analog of acyclovir bound to thymidine kinase. Journal of Biomolecular NMR, 1996, 8, 261-272.	2.8	8
82	Ability of clionasterol and poriferasterol (24-epimers of sitosterol and stigmasterol) to regulate membrane lipid dynamics. Chemistry and Physics of Lipids, 1996, 84, 117-121.	3.2	23
83	X-ray structure determination of a chiral synthon, essential for the synthesis of 25-2H-stigmasterol. Journal of Chemical Crystallography, 1995, 25, 783-786.	1.1	1
84	Selective Photolabeling near the Middle of Bilayers with a Photosensitive Transmembrane Probe. Angewandte Chemie International Edition in English, 1993, 32, 259-261.	4.4	20
85	Selektive Photomarkierung in der Mitte von Doppelschichten mit einer photosensitiven Transmembransonde. Angewandte Chemie, 1993, 105, 302-304.	2.0	5
86	Low cost production of perdeuterated biomass using methylotrophic yeasts. Journal of Labelled Compounds and Radiopharmaceuticals, 1993, 33, 1053-1063.	1.0	16
87	1H nuclear magnetic resonance determination of the membrane-bound conformation of senktide, a highly selective neurokinin B agonist. Journal of Biomolecular NMR, 1993, 3, 443-61.	2.8	18
88	The interaction of various cholesterol â€~ancestors' with lipid membranes: a 2H-NMR study on oriented bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1105, 213-220.	2.6	28
89	Deuterium-NMR investigation of plant sterol effects on soybean phosphatidylcholine acyl chain ordering. Chemistry and Physics of Lipids, 1992, 63, 235-241.	3.2	33
90	Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6926-6930.	7.1	212

#	Article	IF	CITATIONS
91	Tricyclohexaprenol and an octaprenediol, two of the "primitive―amphiphilic lipids do improve phospholipidic membranes. Tetrahedron, 1990, 46, 3143-3154.	1.9	19
92	Transferred nuclear Overhauser effect analyses of membrane-bound enkephalin analogs by proton nuclear magnetic resonance: correlation between activities and membrane-bound conformations. Biochemistry, 1990, 29, 65-75.	2.5	97
93	The Conformation of Cycloartenol Investigated by NMR and Molecular Mechanics. Helvetica Chimica Acta, 1989, 72, 1-13.	1.6	35
94	Comparison of the effects of inserted C40- and C50-terminally dihydroxylated carotenoids on the mechanical properties of various phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1987, 903, 132-141.	2.6	94
95	Osmotic swelling of unilamellar vesicles by the stopped-flow light scattering method. Influence of vesicle size, solute, temperature, cholesterol and three α,ï‰-dihydroxycarotenoids. Biochimica Et Biophysica Acta - Biomembranes, 1986, 859, 1-9.	2.6	58
96	Osmotic swelling of unilamellar vesicles by the stopped-flow light scattering method. Elastic properties of vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1986, 860, 525-530.	2.6	34
97	Organization of Carotenoid-Phospholipid Bilayer Systems. Incorporation of Zeaxanthin, Astaxanthin, and their C50 Homologues into Dimyristoylphosphatidylcholine Vesicles. Helvetica Chimica Acta, 1986, 69, 12-24.	1.6	101