Teodor Parella Coll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3312152/publications.pdf

Version: 2024-02-01

318 papers 10,728 citations

51 h-index 80 g-index

359 all docs

359 docs citations

359 times ranked

10115 citing authors

#	Article	IF	CITATIONS
1	A New Ru Complex Capable of Catalytically Oxidizing Water to Molecular Dioxygen. Journal of the American Chemical Society, 2004, 126, 7798-7799.	13.7	371
2	Direct observation of Cul/CullI redox steps relevant to Ullmann-type coupling reactions. Chemical Science, 2010, 1, 326. April Chil Activation by Cull To Form an Organometallic April & Activation by Cull To Form an Organometallic April & Activation by Cull To Form an Organometallic April & Activation by Cull To Form an Organometallic April & Activation by Cull To Form an Organometallic April & Activation by Cull To Form an Organometallic April & Activation by Cull To Form an Organometallic April & Activation by Cull To Form an Organometallic April & Activation by Cull To Form an Organometallic April & Activation by Cull To Form and O	7.4	246
3	Disproportionation This research was supported by MICYT of Spain through project PBQ2000-0548 and with the grant SGR-3102-UG-01 as well as the Distinction award from from CIRIT Generalitat de Catalunya (Spain). An FI doctoral grant from CIRIT to X.R. and financial support from the National Institutes of Health (USA: T.D.P.S. GM-50730: K.O.H. RR-01209) are also acknowledged. SSRL operations	13.8	239
4	are funded by the D. Angewandte Chemie - International Edition, 2002, 41, 2991. Enantioselective Hydroformylation by a Rh-Catalyst Entrapped in a Supramolecular Metallocage. Journal of the American Chemical Society, 2015, 137, 2680-2687.	13.7	175
5	Opposite metabolic responses of shoots and roots to drought. Scientific Reports, 2014, 4, 6829.	3.3	170
6	Anti-Inflammatory and Analgesic Activity of Baccharis trimera: Identification of its Active Constituents. Planta Medica, 1996, 62, 232-235.	1.3	162
7	Sponge-like molecular cage for purification of fullerenes. Nature Communications, 2014, 5, 5557.	12.8	162
8	Broadband $\langle \sup 1 \langle \sup \rangle$ H homodecoupled NMR experiments: recent developments, methods and applications. Magnetic Resonance in Chemistry, 2015, 53, 399-426.	1.9	148
9	Fructose-6-phosphate Aldolase in Organic Synthesis:  Preparation ofd-Fagomine,N-Alkylated Derivatives, and Preliminary Biological Assays. Organic Letters, 2006, 8, 6067-6070.	4.6	136
10	LR-HSQMBC: A Sensitive NMR Technique To Probe Very Long-Range Heteronuclear Coupling Pathways. Journal of Organic Chemistry, 2014, 79, 3887-3894.	3.2	132
11	Facile Câ^'H Bond Cleavage via a Proton-Coupled Electron Transfer Involving a Câ^'H···Cu ^{II} Interaction. Journal of the American Chemical Society, 2010, 132, 12299-12306.	13.7	131
12	lle-Phe Dipeptide Self-Assembly: Clues to Amyloid Formation. Biophysical Journal, 2007, 92, 1732-1741.	0.5	129
13	Asymmetric Self―and Crossâ€Aldol Reactions of Glycolaldehyde Catalyzed by <scp>D</scp> â€Fructoseâ€6â€phosphate Aldolase. Angewandte Chemie - International Edition, 2009, 48, 5521-5525.	13.8	116
14	Full Sensitivity and Enhanced Resolution in Homodecoupled Bandâ€Selective NMR Experiments. Chemistry - A European Journal, 2013, 19, 17283-17286.	3.3	112
15	Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytologist, 2015, 207, 591-603.	7.3	109
16	Pulsed field gradients: a new tool for routine NMR. Magnetic Resonance in Chemistry, 1998, 36, 467-495.	1.9	108
17	Ruâ∈Hbppâ∈Based Waterâ€Oxidation Catalysts Anchored on Conducting Solid Supports. Angewandte Chemie - International Edition, 2008, 47, 5830-5832.	13.8	108
18	Fine-Tuning the Electronic Properties of Highly Stable Organometallic Culll Complexes Containing Monoanionic Macrocyclic Ligands. Chemistry - A European Journal, 2005, 11, 5146-5156.	3.3	106

#	Article	IF	CITATIONS
19	<scp>D</scp> â€Fructoseâ€6â€phosphate Aldolase in Organic Synthesis: Cascade Chemicalâ€Enzymatic Preparation of Sugarâ€Related Polyhydroxylated Compounds. Chemistry - A European Journal, 2009, 15, 3808-3816.	3.3	104
20	Assessing the Impact of Electronic and Steric Tuning of the Ligand in the Spin State and Catalytic Oxidation Ability of the Fe ^{II} (Pytacn) Family of Complexes. Inorganic Chemistry, 2013, 52, 9229-9244.	4.0	102
21	Synthesis, Structure, and Redox and Catalytic Properties of a New Family of Ruthenium Complexes Containing the Tridentate bpea Ligand. Inorganic Chemistry, 2001, 40, 4150-4156.	4.0	99
22	Highly Enantioselective Electrophilic Amination and Michael Addition of Cyclic β-Ketoesters Induced by Lanthanides and (S,S)-ip-pybox: The Mechanism⊥. Journal of Organic Chemistry, 2007, 72, 2077-2087.	3.2	94
23	Versatile Nanostructured Materials via Direct Reaction of Functionalized Catechols. Advanced Materials, 2013, 25, 2066-2070.	21.0	93
24	Stereoselective Aldol Additions Catalyzed by Dihydroxyacetone Phosphate-Dependent Aldolases in Emulsion Systems: Preparation and Structural Characterization of Linear and Cyclic Iminopolyols from Aminoaldehydes. Chemistry - A European Journal, 2003, 9, 4887-4899.	3.3	88
25	Can the Disproportion of Oxidation State III Be Favored in Rullâ^'OH2/RulVO Systems?. Journal of the American Chemical Society, 2006, 128, 5306-5307.	13.7	87
26	Self-Assembly of a Cyclobutane \hat{l}^2 -Tetrapeptide To Form Nanosized Structures. Organic Letters, 2007, 9, 3643-3645.	4.6	81
27	Drought enhances folivory by shifting foliar metabolomes in <i><scp>Q</scp>uercus ilex</i> trees. New Phytologist, 2014, 202, 874-885.	7.3	81
28	Au(<scp>iii</scp>)-aryl intermediates in oxidant-free C–N and C–O cross-coupling catalysis. Chemical Science, 2017, 8, 946-952.	7.4	77
29	Medium-Chain Acyl-CoA Dehydrogenase (MCAD) Deficiency: The Prevalent Mutation G985 (K304E) Is Subject to a Strong Founder Effect from Northwestern Europe. Human Heredity, 1993, 43, 342-350.	0.8	75
30	Improved Sensitivity in Gradient-Based 1D and 2D Multiplicity-Edited HSQC Experiments. Journal of Magnetic Resonance, 1997, 126, 274-277.	2.1	71
31	Synthesis, Structure, and Acidâ^Base and Redox Properties of a Family of New Ru(II) Isomeric Complexes Containing the Trpy and the Dinucleating Hbpp Ligands. Inorganic Chemistry, 2003, 42, 8385-8394.	4.0	71
32	The Use of Sample Rotation for Minimizing Convection Effects in Self-Diffusion NMR Measurements. Journal of Magnetic Resonance, 2001, 153, 48-55.	2.1	70
33	Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere, 2009, 75, 1344-1349.	8.2	69
34	Recyclable Hybrid Silicaâ€Based Catalysts Derived from Pd–NHC Complexes for Suzuki, Heck and Sonogashira Reactions. European Journal of Organic Chemistry, 2012, 2012, 3625-3635.	2.4	69
35	Synthesis, Structure, and Spectroscopic, Photochemical, Redox, and Catalytic Properties of Ruthenium(II) Isomeric Complexes Containing Dimethyl Sulfoxide, Chloro, and the Dinucleating Bis(2-pyridyl)pyrazole Ligands. Inorganic Chemistry, 2003, 42, 2040-2048.	4.0	66
36	Direct observation of two-electron Ag(I)/Ag(III) redox cycles in coupling catalysis. Nature Communications, 2014, 5, 4373.	12.8	65

#	Article	IF	CITATIONS
37	Supramolecular Fullerene Sponges as Catalytic Masks for Regioselective Functionalization of C60. CheM, 2020, 6, 169-186.	11.7	65
38	Long-range proton–carbon coupling constants: NMR methods and applications. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 73, 17-55.	7.5	63
39	Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions. Nature Chemistry, 2015, 7, 724-729.	13.6	63
40	Divergent Routes to Chiral Cyclobutane Synthons from (â^')-α-Pinene and Their Use in the Stereoselective Synthesis of Dehydro Amino Acids. Journal of Organic Chemistry, 2000, 65, 3934-3940.	3.2	62
41	Isolation of Key Organometallic Aryl-Co(III) Intermediates in Cobalt-Catalyzed C(sp ²)–H Functionalizations and New Insights into Alkyne Annulation Reaction Mechanisms. Journal of the American Chemical Society, 2016, 138, 14388-14397.	13.7	60
42	High-Quality 1D Spectra by Implementing Pulsed-Field Gradients as the Coherence Pathway Selection Procedure., 1996, 34, 329-347.		58
43	Chemoenzymatic Synthesis and Inhibitory Activities of Hyacinthacines A ₁ and A ₂ Stereoisomers. Advanced Synthesis and Catalysis, 2007, 349, 1661-1666.	4.3	57
44	Optimum spin-state selection for all multiplicities in the acquisition dimension of the HSQC experiment. Journal of Magnetic Resonance, 2006, 180, 39-50.	2.1	56
45	Separation and Identification of Phenolic Compounds of Extra Virgin Olive Oil from Olea europaea L. by HPLC-DAD-SPE-NMR/MS. Identification of a New Diastereoisomer of the Aldehydic Form of Oleuropein Aglycone. Journal of Agricultural and Food Chemistry, 2010, 58, 9129-9136.	5.2	56
46	Transition Metal-Mediated Intramolecular [2+2+2] Cycloisomerizations of Cyclic Triynes and Enediynes. Journal of Organic Chemistry, 2005, 70, 2033-2041.	3.2	55
47	Hydrosilylation of Internal Alkynes Catalyzed by Tris―lmidazolium Saltâ€5tabilized Palladium Nanoparticles. Advanced Synthesis and Catalysis, 2014, 356, 179-188.	4.3	55
48	Pure Inâ€Phase Heteronuclear Correlation NMR Experiments. Angewandte Chemie - International Edition, 2014, 53, 8379-8382.	13.8	55
49	(+)- and (â^')-2-Aminocyclobutane-1-carboxylic Acids and Their Incorporation into Highly Rigid β-Peptides:Â Stereoselective Synthesis and a Structural Study. Journal of Organic Chemistry, 2005, 70, 7963-7971.	3.2	54
50	Catalytic C–S, C–Se, and C–P Cross-Coupling Reactions Mediated by a Cu ^I /Cu ^{III} Redox Cycle. Organometallics, 2012, 31, 7976-7982.	2.3	54
51	Mechanistic Insights into the Chemistry of Ru(II) Complexes Containing Cl and DMSO Ligands. Inorganic Chemistry, 2007, 46, 10707-10716.	4.0	53
52	Serine Hydroxymethyl Transferase from <i>Streptococcus thermophilus</i> and <scp>L</scp> â€Threonine Aldolase from <i>Escherichia coli</i> as Stereocomplementary Biocatalysts for the Synthesis of βâ€Hydroxyâ€Î±,ï‰â€diamino Acid Derivatives. Chemistry - A European Journal, 2008, 14, 4647-4656.	3.3	53
53	lonic Liquid Crystals Based on Mesitylene-Containing Bis- and Trisimidazolium Salts. Langmuir, 2008, 24, 259-265.	3.5	52
54	Mechanistics of trichloroethylene mineralization by the white-rot fungus Trametes versicolor. Chemosphere, 2008, 70, 404-410.	8.2	51

#	Article	IF	CITATIONS
55	[2+2] Photocycloaddition of homochiral 2(5H)-furanones to alkenes. First step for an efficient and diastereoselective synthesis of (+)- and (â^')-grandisol. Tetrahedron, 1996, 52, 1267-1278.	1.9	50
56	Aldol Additions of Dihydroxyacetone Phosphate toN-Cbz-Amino Aldehydes Catalyzed byL-Fuculose-1-Phosphate Aldolase in Emulsion Systems: Inversion of Stereoselectivity as a Function of the Acceptor Aldehyde. Chemistry - A European Journal, 2005, 11, 1392-1401.	3.3	50
57	Rhodium(I)â€Catalysed Intramolecular [2+2+2] Cyclotrimerisations of 15â€, 20†and 25â€Membered Azamacrocycles: Experimental and Theoretical Mechanistic Studies. Chemistry - A European Journal, 2009, 15, 5289-5300.	3.3	49
58	Dihydroxyacetone Phosphate Aldolase Catalyzed Synthesis of Structurally Diverse Polyhydroxylated Pyrrolidine Derivatives and Evaluation of their Glycosidase Inhibitory Properties. Chemistry - A European Journal, 2009, 15, 7310-7328.	3.3	49
59	Homodecoupled 1,1―and 1,nâ€ADEQUATE: Pivotal NMR Experiments for the Structure Revision of Cryptospirolepine. Angewandte Chemie - International Edition, 2015, 54, 10160-10164.	13.8	49
60	Diastereofacial selectivity in uncatalyzed Diels-Alder cycloadditions involving α,β-unsaturated esters and lactones with stereogenic centers containing oxygen functionalities. Tetrahedron, 1992, 48, 2659-2680.	1.9	48
61	Disproportionation This research was supported by MICYT of Spain through project PBQ2000-0548 and with the grant SGR-3102-UG-01 as well as the Distinction award from from CIRIT Generalitat de Catalunya (Spain). An FI doctoral grant from CIRIT to X.R. and financial support from the National Institutes of Health (USA: T.D.P.S. GM-50730: K.O.H. RR-01209) are also acknowledged. SSRL operations	2.0	48
62	are funded by the D. Angewandte Chemie, 2002, 114, 3117. Total Synthesis of the Putative Structure of Stemonidine:Â The Definitive Proof of Misassignment. Organic Letters, 2007, 9, 1769-1772.	4.6	48
63	Simultaneous Multiâ€6lice Excitation in Spatially Encoded NMR Experiments. Chemistry - A European Journal, 2013, 19, 15472-15475.	3.3	48
64	14-Helical Folding in a Cyclobutane-Containing \hat{l}^2 -Tetrapeptide. Journal of Organic Chemistry, 2004, 69, 5093-5099.	3.2	46
65	Ecometabolomics: optimized <scp>NMR</scp> â€based method. Methods in Ecology and Evolution, 2013, 4, 464-473.	5.2	46
66	Synthesis, structure and redox properties of a new ruthenium(II) complex containing the flexible tridentate ligand N,N-bis(2-pyridylmethyl)ethylamine, cis-fac-Ru(bpea)22+, and its homologue attached covalently to a polypyrrole film â€. Dalton Transactions RSC, 2000, , 1689-1694.	2.3	44
67	IPAP–HSQMBC: Measurement of long-range heteronuclear coupling constants from spin-state selective multiplets. Journal of Magnetic Resonance, 2010, 207, 312-321.	2.1	44
68	A Definitive NMR Solution for a Simple and Accurate Measurement of the Magnitude and the Sign of Small Heteronuclear Coupling Constants on Protonated and Nonâ€Protonated Carbon Atoms. Angewandte Chemie - International Edition, 2012, 51, 3919-3922.	13.8	44
69	Metabolic responses of <i><scp>Q</scp>uercus ilex</i> seedlings to wounding analysed with nuclear magnetic resonance profiling. Plant Biology, 2014, 16, 395-403.	3.8	44
70	Fast O2Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands. Inorganic Chemistry, 2007, 46, 4997-5012.	4.0	43
71	Accurate measurement of small heteronuclear coupling constants from pure-phase $\hat{l}\pm/\hat{l}^2$ HSQMBC cross-peaks. Journal of Magnetic Resonance, 2011, 213, 145-150.	2.1	43
72	Simultaneous ¹ H and ¹³ C NMR enantiodifferentiation from highly-resolved pure shift HSQC spectra. Chemical Communications, 2014, 50, 10214-10217.	4.1	43

#	Article	IF	CITATIONS
73	Spin-edited 2D HSQC–TOCSY experiments for the measurement of homonuclear and heteronuclear coupling constants: Application to carbohydrates and peptides. Journal of Magnetic Resonance, 2005, 176, 15-26.	2.1	42
74	Regiospecific CH Bond Activation: Reversible H/D Exchange Promoted by Cul Complexes with Triazamacrocyclic Ligands. Angewandte Chemie - International Edition, 2006, 45, 2941-2944.	13.8	42
75	New Ru Complexes Containing the N-Tridentate bpea and Phosphine Ligands:Â Consequences of Meridional vs Facial Geometry. Inorganic Chemistry, 2006, 45, 10520-10529.	4.0	41
76	Structure-guided redesign of d-fructose-6-phosphate aldolase from E. coli: remarkable activity and selectivity towards acceptor substrates by two-point mutation. Chemical Communications, 2011, 47, 5762.	4.1	41
77	Suppression of phase and amplitude J(HH) modulations in HSQC experiments. Magnetic Resonance in Chemistry, $2015, 53, 115-119$.	1.9	41
78	Selective Metalâ€Cation Recognition by [2.2]Ferrocenophanes: The Cases of Zinc―and Lithiumâ€Sensing. Chemistry - A European Journal, 2010, 16, 1532-1542.	3.3	40
79	New Ru(II) Complexes with Anionic and Neutral N-Donor Ligands as Epoxidation Catalysts: An Evaluation of Geometrical and Electronic Effects. Inorganic Chemistry, 2010, 49, 7072-7079.	4.0	40
80	A new dinuclear Ru-Hbpp based water oxidation catalyst with a trans-disposition of the Ru-OH. Dalton Transactions, 2011, 40, 3640.	3.3	40
81	Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biology, 2016, 16, 78.	3.6	40
82	Structureâ€Guided Minimalist Redesign of the <scp>L</scp> â€Fuculoseâ€1â€Phosphate Aldolase Active Site: Expedient Synthesis of Novel Polyhydroxylated Pyrrolizidines and their Inhibitory Properties Against Glycosidases and Intestinal Disaccharidases. Chemistry - A European Journal, 2010, 16, 10691-10706.	3.3	39
83	Redesign of the Phosphate Binding Site of <scp>L</scp> â€Rhamnulose―1â€Phosphate Aldolase towards a Dihydroxyacetone Dependent Aldolase. Advanced Synthesis and Catalysis, 2011, 353, 89-99.	4.3	38
84	High pressure processing of dry-cured ham: Ultrastructural and molecular changes affecting sodium and water dynamics. Innovative Food Science and Emerging Technologies, 2012, 16, 335-340.	5.6	38
85	Highly efficient and diastereoselective approaches to (+)- and (â^')-grandisol. Tetrahedron, 1996, 52, 1279-1292.	1.9	37
86	¹³ C NMR Spectroscopy for the Differentiation of Enantiomers Using Chiral Solvating Agents. Analytical Chemistry, 2013, 85, 10887-10894.	6.5	37
87	Implementing homo- and heterodecoupling in region-selective HSQMBC experiments. Journal of Magnetic Resonance, 2014, 238, 63-69.	2.1	37
88	Stereoselective Rhodium atalysed [2+2+2] Cycloaddition of Linear Allene–Ene/Yne–Allene Substrates: Reactivity and Theoretical Mechanistic Studies. Chemistry - A European Journal, 2014, 20, 5034-5045.	3.3	37
89	Enantioselective Rhodium(I) Donor Carbenoidâ€Mediated Cascade Triggered by a Baseâ€Free Decomposition of Arylsulfonyl Hydrazones. Chemistry - A European Journal, 2015, 21, 16240-16245.	3.3	37
90	Rhodium Nanoflowers Stabilized by a Nitrogenâ€Rich PEGâ€Tagged Substrate as Recyclable Catalyst for the Stereoselective Hydrosilylation of Internal Alkynes. Advanced Synthesis and Catalysis, 2015, 357, 89-99.	4.3	37

#	Article	IF	Citations
91	Substitution Reactions on Cyclometalated Pt(IV) Complexes. Associative Tuning by Fluoro Ligands and Fluorinated Substituents. Inorganic Chemistry, 2002, 41, 1747-1754.	4.0	36
92	Enantiodifferentiation through Frequencyâ€Selective Pureâ€Shift ¹ H Nuclear Magnetic Resonance Spectroscopy. ChemPhysChem, 2014, 15, 854-857.	2.1	36
93	Redox-Active Metallacarborane-Decorated Octasilsesquioxanes. Electrochemical and Thermal Properties. Inorganic Chemistry, 2016, 55, 11630-11634.	4.0	36
94	Carboxylate-Assisted Formation of Aryl-Co(III) Masked-Carbenes in Cobalt-Catalyzed C–H Functionalization with Diazo Esters. Journal of the American Chemical Society, 2017, 139, 14649-14655.	13.7	36
95	Cyclometalated gold(<scp>iii</scp>) complexes: noticeable differences between (N,C) and (P,C) ligands in migratory insertion. Chemical Science, 2018, 9, 3932-3940.	7.4	36
96	Biocatalyzed Synthesis and Structural Characterization of Monoglucuronides of Hydroxytyrosol, Tyrosol, Homovanillic Alcohol, and 3-(4′-Hydroxyphenyl)propanol. Advanced Synthesis and Catalysis, 2006, 348, 2155-2162.	4.3	35
97	Engineering the Donor Selectivity of <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase for Biocatalytic Asymmetric Crossâ€Aldol Additions of Glycolaldehyde. Chemistry - A European Journal, 2014, 20, 12572-12583.	3.3	35
98	Engineered <scp>L</scp> â€Serine Hydroxymethyltransferase from <i>Streptococcus thermophilus</i> for the Synthesis of α,αâ€Dialkylâ€Î±â€Amino Acids. Angewandte Chemie - International Edition, 2015, 54, 3013	3- 3 0 1 87.	35
99	Clean Selective Spin-Locking Spectra Using Pulsed Field Gradients. Journal of Magnetic Resonance Series B, 1995, 108, 77-80.	1.6	34
100	Palladium(0)-Catalyzed Synthesis of 2-Vinyl-2,3-dihydro-benzo[1,4]dioxins. European Journal of Organic Chemistry, 1999, 1999, 2665-2673.	2.4	34
101	Highly Efficient and Diastereoselective Synthesis of (+)-Lineatin. Organic Letters, 2004, 6, 1449-1452.	4. 6	34
102	Variable Coordination Behavior of New Hybrid Pyrazole Ligand: Synthesis and Characterization of Several Zn ^I , Cd ^I , Hg ^I , Pd ^I , Pt ^I , and Ni ^I Complexes. Inorganic Chemistry, 2009, 48, 8736-8750.	4.0	34
103	Microwaveâ€Enhanced Rhodiumâ€Catalyzed [2+2+2] Cycloaddition Reactions To Afford Highly Functionalized Pyridines and Bipyridines. European Journal of Organic Chemistry, 2010, 2010, 3407-3415.	2.4	34
104	An Enantiopure Propellerâ€Like Tritylâ€Brominated Radical: Bringing Together a High Racemization Barrier and an Efficient Circularly Polarized Luminescent Magnetic Emitter. Chemistry - A European Journal, 2020, 26, 3776-3781.	3.3	34
105	Palladium(0)-catalyzed allylation of highly acidic and non-nucleophilic arenesulfonamides, sulfamide, and cyanamide. II. Formation of medium and large heterocycles. Tetrahedron, 1998, 54, 14885-14904.	1.9	33
106	Synthesis, Structure, and Redox Properties of a New Aqua Ruthenium Complex Containing the Tridentate [9] ane S3 and the Didentate 1,10-Phenanthroline Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 612-618.	2.0	33
107	Multiple FID Acquisition of Complementary HMBC Data. Angewandte Chemie - International Edition, 2007, 46, 7495-7497.	13.8	33
108	Timeâ€shared NMR experiments. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2010, 36A, 1-23.	0.5	33

#	Article	IF	CITATIONS
109	Chiral Metabonomics: 1H NMR-Based Enantiospecific Differentiation of Metabolites in Human Urine via Direct Cosolvation with Î ² -Cyclodextrin. Analytical Chemistry, 2012, 84, 2868-2874.	6.5	33
110	Antifungal sesquiterpene from the root of Vernonanthura tweedieana. Journal of Ethnopharmacology, 2005, 97, 49-52.	4.1	32
111	Intramolecular [2+2+2] Cycloaddition Reactions of Yneâ€eneâ€yne and Yneâ€yneâ€ene Enediynes Catalysed by Rh ^I : Experimental and Theoretical Mechanistic Studies. Chemistry - A European Journal, 2011, 17, 14493-14507.	3.3	32
112	Fused tetracycles with a benzene or cyclohexadiene core: $[2+2+2]$ cycloadditions on macrocyclic systems. Chemical Communications, 2008, , 4339.	4.1	31
113	Sequential Biocatalytic Aldol Reactions in Multistep Asymmetric Synthesis: Pipecolic Acid, Piperidine and Pyrrolidine (Homo)Iminocyclitol Derivatives from Achiral Building Blocks. Advanced Synthesis and Catalysis, 2014, 356, 3007-3024.	4.3	31
114	Direct Monitoring of Exogenous \hat{I}^3 -Hydroxybutyric Acid in Body Fluids by NMR Spectroscopy. Analytical Chemistry, 2017, 89, 8343-8350.	6.5	31
115	Preparation and NMR Spectroscopy of (1,2-Bis(diphenylphosphino)ethane)(\hat{l} -3-1,3-diarylallyl)- palladium Tetrafluoroborates. Correlation of Chemical Shifts with Hammett Substituent Constants and with the Regioselectivity of Nucleophilic Attack. Organometallics, 1997, 16, 205-209.	2.3	30
116	Quick Recording of Pure Absorption 2D TOCSY, ROESY, and NOESY Spectra Using Pulsed Field Gradients. Journal of Magnetic Resonance, 1997, 125, 145-148.	2.1	30
117	Lonicera Implexa Leaves Bearing Naturally Laid Eggs of the Specialist Herbivore Euphydryas Aurinia have Dramatically Greater Concentrations of Iridoid Glycosides than other Leaves. Journal of Chemical Ecology, 2006, 32, 1925-1933.	1.8	30
118	Atropisomeric Discrimination in New Rull Complexes Containing the C2-Symmetric Didentate Chiral Phenyl-1,2-bisoxazolinic Ligand. Chemistry - A European Journal, 2006, 12, 2798-2807.	3.3	30
119	New Ru(II) Complexes Containing Oxazoline Ligands As Epoxidation Catalysts. Influence of the Substituents on the Catalytic Performance. Inorganic Chemistry, 2011, 50, 6044-6054.	4.0	30
120	Chemoenzymatic synthesis, structural study and biological activity of novel indolizidine and quinolizidine iminocyclitols. Organic and Biomolecular Chemistry, 2012, 10, 6309.	2.8	30
121	CLIP-HSQMBC: easy measurement of small proton–carbon coupling constants in organic molecules. Organic and Biomolecular Chemistry, 2013, 11, 4473.	2.8	30
122	Arylâ€Copper(III)â€Acetylides as Key Intermediates in CC _{sp} Model Couplings under Mild Conditions. Chemistry - A European Journal, 2014, 20, 10005-10010.	3.3	30
123	Technical aspects of an efficient multiple solvent suppression pulse sequence., 1999, 37, 7-14.		29
124	Synthesis and Conformational Analysis of New Cyclobutane-Fused Nucleosidesâ€. Organic Letters, 2006, 8, 491-494.	4.6	29
125	Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructoseâ€6â€phosphate Aldolase. Chemistry - A European Journal, 2017, 23, 5005-5009.	3.3	29
126	Systematic Evaluation of Molecular Recognition Phenomena. 3. Selective Diphosphate Binding to Isomeric Hexaazamacrocyclic Ligands Containing Xylylic Spacers. Inorganic Chemistry, 2003, 42, 8545-8550.	4.0	28

#	Article	IF	CITATIONS
127	CN-HMBC:Â A Powerful NMR Technique for the Simultaneous Detection of Long-Range1H,13C and1H,15N Connectivities. Organic Letters, 2007, 9, 29-32.	4.6	28
128	Synthesis and Characterization of Metallomacrocyclic Palladium(II) Complexes with New Hybrid Pyrazole Ligands. Diffusion NMR Studies and Theoretical Calculations. Inorganic Chemistry, 2008, 47, 11084-11094.	4.0	27
129	Electron-, Proton-, and Photon-Induced Spectroscopic Changes in Chromophore-Quencher Tricarbonyl(2,2′-Bipyridine)rhenium(I) Complexes with 4,4′-Azobis(pyridine). Inorganic Chemistry, 2010, 49, 4084-4091.	4.0	27
130	Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals. Journal of Magnetic Resonance, 2014, 244, 30-35.	2.1	27
131	One-Shot Determination of Residual Dipolar Couplings: Application to the Structural Discrimination of Small Molecules Containing Multiple Stereocenters. Journal of Organic Chemistry, 2016, 81, 11126-11131.	3.2	27
132	(1,2-Bis(diphenylphosphino)ethane)(.eta.3-1-arylallyl)palladium Tetrafluoroborates. Distribution of the Positive Charge Density by Correlation of NMR Chemical Shifts with Hammett Substituent Constants. Organometallics, 1995, 14, 2463-2469.	2.3	26
133	The First Transition Metal Complexes of 15-Membered Triolefinic Macrocycles: (E,E,E)-1,6,11-Tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene Complexes of Palladium(0), Platinum(0), and Silver(I). European Journal of Inorganic Chemistry, 2001, 2001, 1999-2006.	2.0	26
134	O2Chemistry of Dicopper Complexes with Alkyltriamine Ligands. Comparing Synergistic Effects on O2Binding. Inorganic Chemistry, 2006, 45, 5239-5241.	4.0	26
135	Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by l-rhamnulose-1-phosphate and l-fuculose-1-phosphate aldolases in aqueous borate buffer. Organic and Biomolecular Chemistry, 2011, 9, 8430.	2.8	26
136	High-Boron-Content Porphyrin-Cored Aryl Ether Dendrimers: Controlled Synthesis, Characterization, and Photophysical Properties. Inorganic Chemistry, 2015, 54, 5021-5031.	4.0	26
137	Enhancing the utility of 1JCH coupling constants in structural studies through optimized DFT analysis. Chemical Communications, 2019, 55, 5781-5784.	4.1	26
138	Purge Scheme for Efficient Suppression of Direct Responses in Gradient-Enhanced HMBC Spectra. Journal of Magnetic Resonance Series A, 1995, 112, 241-245.	1.6	25
139	Effective multiple-solvent suppression scheme using the excitation sculpting principle. , 1998, 36, 245-249.		25
140	Influence of N-amino protecting group on aldolase-catalyzed aldol additions of dihydroxyacetone phosphate to amino aldehydes. Tetrahedron, 2006, 62, 2648-2656.	1.9	25
141	Functionalization of the 3â€Position of Thiophene and Benzo[<i>b</i>]thiophene Moieties by Palladiumâ€Catalyzed CïŁ¿C Bond Forming Reactions using Diazonium Salts. Advanced Synthesis and Catalysis, 2011, 353, 2003-2012.	4.3	25
142	Chemo-enzymatic synthesis and glycosidase inhibitory properties of DAB and LAB derivatives. Organic and Biomolecular Chemistry, 2013, 11, 2005.	2.8	25
143	Disentangling Complex Mixtures of Compounds with Nearâ€Identical ¹ H and ¹³ Câ€NMR Spectra using Pure Shift NMR Spectroscopy. Chemistry - A European Journal, 2015, 21, 7682-7685.	3.3	25
144	Biocatalytic Aldol Addition of Simple Aliphatic Nucleophiles to Hydroxyaldehydes. ACS Catalysis, 2018, 8, 8804-8809.	11,2	25

#	Article	IF	Citations
145	Synthesis of γ-Hydroxy-α-amino Acid Derivatives by Enzymatic Tandem Aldol Addition–Transamination Reactions. ACS Catalysis, 2021, 11, 4660-4669.	11.2	25
146	(1-(Dimethylamino)-2-(diphenylphosphino)ethane)(η3-1-arylallyl)palladium Tetrafluoroborates. Preparation, Isomeric Equilibria, and Correlations of NMR Chemical Shifts with Hammett Substituent Constants. Journal of Organic Chemistry, 1996, 61, 758-763.	3.2	24
147	pH-Induced Luminescence Changes of Chromophore-Quencher Tricarbonylpolypyridylrhenium(I) Complexes with 4-Pyridinealdazine. European Journal of Inorganic Chemistry, 2007, 2007, 5323-5332.	2.0	24
148	Spin-State-Selective Excitation in Selective 1D Inverse NMR Experiments. Journal of Magnetic Resonance, 2001, 148, 78-87.	2.1	23
149	Catalytic Ability of a Cationic Ru(II) Monochloro Complex for the Asymmetric Hydrogenation of Dimethyl Itaconate and Enamides. Inorganic Chemistry, 2006, 45, 2644-2651.	4.0	23
150	Synthesis and structural study of novel dimethylcyclobutyl β-peptides. Tetrahedron, 2009, 65, 5669-5675.	1.9	23
151	Ene reactions between two alkynes? Doors open to thermally induced cycloisomerization of macrocyclic triynes and enediynes. Chemical Communications, 2010, 46, 2944.	4.1	23
152	Design of Zn-, Cu-, and Fe-Coordination Complexes Confined in a Self-Assembled Nanocage. Inorganic Chemistry, 2018, 57, 3529-3539.	4.0	23
153	Electrophilic Iron Catalyst Paired with a Lithium Cation Enables Selective Functionalization of Nonâ€Activated Aliphatic Câ°'H Bonds via Metallocarbene Intermediates. Angewandte Chemie - International Edition, 2019, 58, 13904-13911.	13.8	23
154	A general building block to introduce carbon multiplicity information into multi-dimensional HSQC-type experiments. Magnetic Resonance in Chemistry, 1998, 36, 715-719.	1.9	22
155	Spin-state-selective excitation in gradient-selected heteronuclear cross-polarization NMR experiments. Journal of Magnetic Resonance, 2004, 167, 266-272.	2.1	22
156	The Structural Diversity Triggered by Intermolecular Interactions between Au ^I S ₂ Groups: Aurophilia and Beyond. Chemistry - A European Journal, 2012, 18, 9965-9976.	3.3	22
157	New Aqua N-Heterocyclic Carbene Ru(II) Complexes with Two-Electron Process as Selective Epoxidation Catalysts: An Evaluation of Geometrical and Electronic Effects. Inorganic Chemistry, 2013, 52, 5077-5087.	4.0	22
158	Recent Advances in Small Molecule NMR: Improved HSQC and HSQMBC Experiments. Annual Reports on NMR Spectroscopy, 2015, 84, 163-232.	1.5	22
159	Perfect 1JCH-resolved HSQC: Efficient measurement of one-bond proton-carbon coupling constants along the indirect dimension. Journal of Magnetic Resonance, 2017, 276, 37-42.	2.1	22
160	Rhodiumâ€Catalyzed [2+2+2] Cycloaddition Reactions of Linear Allene–Ene–Ynes to afford Fused Tricyclic Scaffolds: Insights into the Mechanism. Chemistry - A European Journal, 2017, 23, 14889-14899.	3.3	22
161	Nucleophile Promiscuity of Engineered Classâ€II Pyruvate Aldolase YfaU from <i>E.â€Coli</i> . Angewandte Chemie - International Edition, 2018, 57, 3583-3587.	13.8	22
162	Dinuclear Copper(I) Complexes with Hexaaza Macrocyclic Dinucleating Ligands:  Structure and Dynamic Properties. Inorganic Chemistry, 2003, 42, 4456-4468.	4.0	21

#	Article	IF	CITATIONS
163	Stepwise Construction of Oligomeric 1,2-Diselenolene Platinum(IV) Complexes. Angewandte Chemie - International Edition, 2004, 43, 4049-4052.	13.8	21
164	NMR-aided differentiation of enantiomers: Signal enantioresolution. Analytica Chimica Acta, 2015, 876, 63-70.	5.4	21
165	Chiral Recognition by Dissolution DNP NMR Spectroscopy of ¹³ C-Labeled <scp>dl</scp> -Methionine. Analytical Chemistry, 2017, 89, 4939-4944.	6.5	21
166	New Vistas in Transmetalation with Discrete "AgCF 3 ―Species: Implications in Pdâ€Mediated Trifluoromethylation Reactions. Chemistry - A European Journal, 2018, 24, 11895-11898.	3.3	21
167	Theoretical, structural and NMR studies of fluxionality in thiolato-bridged platinum(II)-platinum(IV) dinuclear complexes. Inorganica Chimica Acta, 1997, 265, 89-102.	2.4	20
168	Photocycloaddition of (Z)-1,2-dichloroethylene to enantiopure 2(5H)-furanones: an efficient strategy for the diastereoselective synthesis of cyclobutane and cyclobutene derivatives. Tetrahedron Letters, 2003, 44, 69-71.	1.4	20
169	New Synthetic Routes toward Enantiopure Nitrogen Donor Ligands. Journal of Organic Chemistry, 2006, 71, 9283-9290.	3.2	20
170	A Novel Carbene Ruthenium Complex as Reusable and Selective Twoâ€Electron Catalyst for Alkene Epoxidation. Advanced Synthesis and Catalysis, 2011, 353, 231-238.	4.3	20
171	Structureâ€Guided Engineering of <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase for Improved Acceptor Tolerance in Biocatalytic Aldol Additions. Advanced Synthesis and Catalysis, 2015, 357, 1787-1807.	4.3	20
172	2â€Ketoâ€3â€Deoxyâ€ <scp>I</scp> â€Rhamnonate Aldolase (YfaU) as Catalyst in Aldol Additions of Pyruvate to Amino Aldehyde Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 2090-2100.	4.3	20
173	Novel Homo- and Heterobimetallic Palladium(0) and Platinum(0) Complexes of Olefinic Mono-, Bis-, and Tris-macrocyclic Ligands. Organometallics, 2004, 23, 2533-2540.	2.3	19
174	Fine Tuning of MLCT States in New Mononuclear Complexes of Ruthenium(II) Containing Tris(1-pyrazolyl)methane, 2,2?-Bipyridine and Aromatic Nitrogen Heterocycles. European Journal of Inorganic Chemistry, 2005, 2005, 272-277.	2.0	19
175	Synthesis, Structure, Redox Properties, and Catalytic Activity of New Ruthenium Complexes Containing Neutral or Anionic and Facial or Meridional Ligands:  An Evaluation of Electronic and Geometrical Effects. Inorganic Chemistry, 2007, 46, 5381-5389.	4.0	19
176	Optimizing sensitivity and resolution in time-shared NMR experiments. Magnetic Resonance in Chemistry, 2007, 45, 325-329.	1.9	19
177	Nuclearity control in gold dithiocarboxylato compounds. CrystEngComm, 2010, 12, 2332.	2.6	19
178	Rhodiumâ€NHC Hybrid Silica Materials as Recyclable Catalysts for [2+2+2] Cycloaddition Reactions of Alkynes. European Journal of Organic Chemistry, 2014, 2014, 6242-6251.	2.4	19
179	Extending long-range heteronuclear NMR connectivities by HSQMBC-COSY and HSQMBC-TOCSY experiments. Journal of Magnetic Resonance, 2015, 258, 25-32.	2.1	19
180	Improving the performance of <i>J</i> à€modulated ADEQUATE experiments through homonuclear decoupling and nonâ€uniform sampling. Magnetic Resonance in Chemistry, 2017, 55, 191-197.	1.9	19

#	Article	IF	Citations
181	Aldolaseâ€Catalyzed Asymmetric Synthesis of Nâ€Heterocycles by Addition of Simple Aliphatic Nucleophiles to Aminoaldehydes. Advanced Synthesis and Catalysis, 2019, 361, 2673-2687.	4.3	19
182	Simultaneous Enantiospecific Detection of Multiple Compounds in Mixtures using NMR Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 23615-23619.	13.8	19
183	Effect of hydroxyl and carbonyl groups on long-range proton—carbon coupling constants. Magnetic Resonance in Chemistry, 1994, 32, 657-664.	1.9	18
184	Structural NMR Studies on Aryl-Substitutedï∈-Allyl-Pd(II) Complexes by Concerted Use of Gradient-Based Experiments. , 1997, 35, 227-236.		18
185	Time-sharing evolution and sensitivity enhancements in 2D HSQC-TOCSY and HSQMBC experiments. Magnetic Resonance in Chemistry, 2006, 44, 1031-1036.	1.9	18
186	Fine-Tuning Ligandâ^'Receptor Design for Selective Molecular Recognition of Dicarboxylic Acids. Inorganic Chemistry, 2007, 46, 10632-10638.	4.0	18
187	Straightforward measurement of individual 1J(CH) and 2J(HH) in diastereotopic CH2 groups. Journal of Magnetic Resonance, 2014, 242, 33-40.	2.1	18
188	Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons. Journal of Magnetic Resonance, 2016, 266, 16-22.	2.1	18
189	Accurate measurement of <i>J</i> _{HH} in overlapped signals by a TOCSYâ€edited SERF Experiment. Magnetic Resonance in Chemistry, 2017, 55, 525-529.	1.9	18
190	Regioselectivity studies by selective detection of long-range heteronuclear couplings from the SDEPT-1D method. Magnetic Resonance in Chemistry, 1994, 32, 343-347.	1.9	17
191	Simultaneous $\hat{l}\pm\hat{l}^2$ spin-state selection for 13C and 15N from a time-shared HSQC-IPAP experiment. Journal of Biomolecular NMR, 2006, 37, 65-77.	2.8	17
192	A Simple Method for Measuring Long-Range1Hâ^13C Coupling Constants in Organic Molecules. Journal of Organic Chemistry, 2007, 72, 3166-3170.	3.2	17
193	Understanding Electronic Ligand Perturbation over Successive Metalâ€Based Redox Potentials in Mononuclear Ruthenium–Aqua Complexes. ChemPlusChem, 2013, 78, 235-243.	2.8	17
194	Aldolase-Catalyzed Synthesis of Conformationally Constrained Iminocyclitols: Preparation of Polyhydroxylated Benzopyrrolizidines and Cyclohexapyrrolizidines. Organic Letters, 2014, 16, 1422-1425.	4.6	17
195	¹ <i>J</i> CH NMR Profile: Identification of Key Structural Features and Functionalities by Visual Observation and Direct Measurement of One-Bond Proton-Carbon Coupling Constants. Journal of Organic Chemistry, 2017, 82, 2040-2044.	3.2	17
196	Improved HMQC-Type and HSQC-Type 1D Spectra Using Pulsed Field Gradients. Journal of Magnetic Resonance Series A, 1995, 114, 32-38.	1.6	16
197	Activity of taraxasteryl acetate on inflammation and heat shock protein synthesis. Phytomedicine, 2005, 12, 278-284.	5.3	16
198	New Ruthenium(II) Complexes with Enantiomerically Pure Bis- and Tris(pinene)-Fused Tridentate Ligands. Synthesis, Characterization and Stereoisomeric Analysis. Inorganic Chemistry, 2008, 47, 8016-8024.	4.0	16

#	Article	IF	CITATIONS
199	P.E.HSQMBC: Simultaneous measurement of proton–proton and proton–carbon coupling constants. Journal of Magnetic Resonance, 2012, 224, 101-106.	2.1	16
200	On the interference of <i>J</i> (HH) modulation in HSQMBCâ€IPAP and HMBCâ€IPAP experiments. Magnetic Resonance in Chemistry, 2013, 51, 509-516.	1.9	16
201	Efficient and fast sign-sensitive determination of heteronuclear coupling constants. Journal of Magnetic Resonance, 2013, 236, 66-69.	2.1	16
202	Casuarine Stereoisomers from Achiral Substrates: Chemoenzymatic Synthesis and Inhibitory Properties. Journal of Organic Chemistry, 2014, 79, 5386-5389.	3.2	16
203	Intramolecular Photoreactions of (5S)-5-Oxymethyl-2(5H)-furanones as a Tool for the Stereoselective Generation of Diverse Polycyclic Scaffolds. Journal of Organic Chemistry, 2015, 80, 9437-9445.	3.2	16
204	Selecting the Most Appropriate NMR Experiment to Access Weak and/or Very Long-Range Heteronuclear Correlations. Journal of Natural Products, 2016, 79, 1400-1406.	3.0	16
205	Implementing one-shot multiple-FID acquisition into homonuclear and heteronuclear NMR experiments. Chemical Communications, 2018, 54, 13507-13510.	4.1	16
206	New Polyphenol Glycosides fromRamonda myconiâ€. Journal of Natural Products, 1996, 59, 419-422.	3.0	15
207	On the regioselectivity in nitrone cycloadditions to \hat{l}^3 -oxo \hat{l}_{\pm},\hat{l}^2 -unsaturated esters. Tetrahedron, 1998, 54, 10857-10878.	1.9	15
208	Improved multiplicity-edited ADEQUATE experiments. Journal of Magnetic Resonance, 2004, 166, 123-128.	2.1	15
209	Efficient measurement of the sign and the magnitude of longâ€range protonâ€carbon coupling constants from a spinâ€stateâ€selective HSQMBCâ€COSY experiment. Magnetic Resonance in Chemistry, 2012, 50, 717-72	1 ^{1.9}	15
210	Gradient Selection in Pseudo-3D Experiments. Journal of Magnetic Resonance Series A, 1995, 113, 124-127.	1.6	14
211	NMR study of 9-(1-adamantylaminomethyl)-9,10-dihydroanthracene and its \hat{l}^2 -cyclodextrin complexes. Magnetic Resonance in Chemistry, 2000, 38, 925-931.	1.9	14
212	A complete set of novel 2D correlation NMR experiments based on heteronuclear J-cross polarization. Journal of Biomolecular NMR, 2004, 29, 37-55.	2.8	14
213	Chiral and Stable Palladium(0) Complexes of Polyunsaturated Aza-macrocyclic Ligands:  Synthesis and Structural Analysis. Organometallics, 2006, 25, 5612-5620.	2.3	14
214	Reâ€esterified Palm Oils, Compared to Native Palm Oil, do not Alter Fat Absorption, Postprandial Lipemia or Growth Performance in Broiler Chicks. Lipids, 2014, 49, 795-805.	1.7	14
215	Ultra high-resolution HSQC: application to the efficient and accurate measurement of heteronuclear coupling constants. Chemical Communications, 2015, 51, 3262-3265.	4.1	14
216	Access to experimentally infeasible spectra by pure-shift NMR covariance. Journal of Magnetic Resonance, 2016, 270, 161-168.	2.1	14

#	Article	IF	Citations
217	Structural discrimination from <i>in situ</i> measurement of ¹ <i>D</i> _{CH} and ² <i>D</i> _{HH} residual dipolar coupling constants. Magnetic Resonance in Chemistry, 2017, 55, 540-545.	1.9	14
218	Practical aspects of the simultaneous collection of COSY and TOCSY spectra. Magnetic Resonance in Chemistry, 2019, 57, S85-S94.	1.9	14
219	Structural Analysis of Chiral Complexes of Palladium(0) with 15-Membered Triolefinic Macrocyclic Ligands. Chemistry - A European Journal, 2005, 11, 2689-2697.	3.3	13
220	Synthetic Studies of Sesquiterpenes with the Dunniane Skeleton. European Journal of Organic Chemistry, 2012, 2012, 1404-1417.	2.4	13
221	Polypyrrole-functionalized ruthenium carbene catalysts as efficient heterogeneous systems for olefin epoxidation. Dalton Transactions, 2014, 43, 9916-9923.	3.3	13
222	Expedient Synthesis of C â€Aryl Carbohydrates by Consecutive Biocatalytic Benzoin and Aldol Reactions. Chemistry - A European Journal, 2015, 21, 3335-3346.	3.3	13
223	Intramolecular Benzoin Reaction Catalyzed by Benzaldehyde Lyase from Pseudomonas Fluorescens Biovar I. Angewandte Chemie - International Edition, 2017, 56, 5304-5307.	13.8	13
224	Towards perfect NMR: Spinâ€echo versus perfectâ€echo building blocks. Magnetic Resonance in Chemistry, 2019, 57, 13-29.	1.9	13
225	Interleaved Dual NMR Acquisition of Equivalent Transfer Pathways in TOCSY and HSQC Experiments. ChemPhysChem, 2019, 20, 356-360.	2.1	13
226	Clean Proton Editing Using a Gradient-Selected Multiple-Quantum Filter. Journal of Magnetic Resonance Series A, 1995, 117, 78-83.	1.6	12
227	Cycloadditions of 3,4-dihydro-2H-pyrrole 1-oxide to methylene- \hat{I}^3 -butyrolactones. Tetrahedron, 1997, 53, 14763-14772.	1.9	12
228	Experimental Evidence for the Breakdown of the Karplus Relationship for3J(13C,1H) in1Hâ€"Câ€"C=13C Systems. , 1997, 35, 30-34.		12
229	The production of a new extracellular putative long-chain saturated polyester by smooth variants of Mycobacterium vaccae interferes with $Th1$ -cytokine production. Antonie Van Leeuwenhoek, 2006, 90, 93-108.	1.7	12
230	Rhodium(I)-Catalyzed $[2+2+2]$ Cycloaddition Reactions of Triacetylenic 15-Membered Aza Macrocycles: A Comparative Structural Study. Organometallics, 2012, 31, 318-326.	2.3	12
231	A benzyl alcohol derivative of the BDPA radical for fast dissolution dynamic nuclear polarization NMR spectroscopy. Organic and Biomolecular Chemistry, 2015, 13, 2689-2693.	2.8	12
232	Engineered <scp>L</scp> â€Serine Hydroxymethyltransferase from <i>Streptococcus thermophilus</i> for the Synthesis of α,αâ€Dialkylâ€Ĩ±â€Amino Acids. Angewandte Chemie, 2015, 127, 3056-3060.	2.0	12
233	Selective photoreduction of nitrophenyl ethers by amines in ternary \hat{l}^2 -cyclodextrin complexes. A spectroscopic and mechanistic studyDedicated to Professor Frank Wilkinson on the occasion of his retirement Physical Chemistry Chemical Physics, 2002, 4, 216-223.	2.8	11
234	Synthesis, Structure and Hydrolytic Properties of a Family of New Zn Complexes Containing Hexaazamacrocyclic Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 857-865.	2.0	11

#	Article	IF	Citations
235	Solution-State NMR Experiments Based on Heteronuclear Cross-Polarization. Current Analytical Chemistry, 2007, 3, 47-68.	1.2	11
236	Synthesis, spectroscopic and electrochemical characterization and molecular structure of polypyridyl ruthenium complexes containing 4,4′-azobis(pyridine). Polyhedron, 2008, 27, 2990-2996.	2.2	11
237	Synthesis and Structure of Novel Rull - N≡C - Me Complexes and their Activity Towards Nitrile Hydrolysis: An Examination of Ligand Effects. Australian Journal of Chemistry, 2009, 62, 1675.	0.9	11
238	Improving the Photosensitizing Properties of Ruthenium Polypyridyl Complexes Using 4-Methyl-2,2′-bipyridine-4′-carbonitrile as an Auxiliary Ligand. Inorganic Chemistry, 2013, 52, 4950-4962.	4.0	11
239	Chiral Induction in Intramolecular Rhodium atalyzed [2+2+2] Cycloadditions of Optically Active Allene–ene/yne–allene Substrates. Advanced Synthesis and Catalysis, 2017, 359, 506-512.	4.3	11
240	Nucleophile Promiscuity of Engineered Classâ€II Pyruvate Aldolase YfaU from <i>E.â€Coli</i> . Angewandte Chemie, 2018, 130, 3645-3649.	2.0	11
241	Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position. PLoS ONE, 2017, 12, e0177030.	2.5	11
242	IFSERF, an isotope-filtered SERF experiment for the precise measurement of proton–proton coupling constants between chemically equivalent protons. Journal of Magnetic Resonance, 2005, 173, 305-309.	2.1	10
243	Redox-Controlled Molecular Flipper Based on a Chiral Cu Complex. Inorganic Chemistry, 2006, 45, 9643-9645.	4.0	10
244	Measurement of longâ€range proton–carbon coupling constants from pure inâ€phase 1D multiplets. Magnetic Resonance in Chemistry, 2011, 49, 502-507.	1.9	10
245	Implementing multiplicity editing in selective HSQMBC experiments. Journal of Magnetic Resonance, 2015, 252, 170-175.	2.1	10
246	Synthesis and characterization of 6βâ€hydroxyandrosterone and 6βâ€hydroxyetiocholanolone conjugated with glucuronic acid. Drug Testing and Analysis, 2015, 7, 247-252.	2.6	10
247	Synthesis of $(\hat{A}\pm)$ -Serralongamine A and the Revised Structure of Huperzine N. Journal of Organic Chemistry, 2016, 81, 2629-2634.	3.2	10
248	Exopolysaccharides from olive brines could reduce the adhesion of ETEC K88 to intestinal epithelial cells. Food and Function, 2018, 9, 3884-3894.	4.6	10
249	Biocatalytic Construction of Quaternary Centers by Aldol Addition of 3,3-Disubstituted 2-Oxoacid Derivatives to Aldehydes. Journal of the American Chemical Society, 2020, 142, 19754-19762.	13.7	10
250	Long-range proton-carbon coupling constants. Part Ilâ€"norbornene systems. Magnetic Resonance in Chemistry, 1995, 33, 196-200.	1.9	9
251	Selective Gradient-Enhanced Inverse Experiments. Journal of Magnetic Resonance Series A, 1995, 112, 106-108.	1.6	9
252	A Simple Approach for Ultraclean Multisite Selective Excitation Using Excitation Sculpting. Journal of Magnetic Resonance, 1998, 135, 50-53.	2.1	9

#	Article	IF	CITATIONS
253	Stereoselective Synthesis of [3.3.0]â€Fused γâ€Butyrolactones of Carbohydrates. Journal of Carbohydrate Chemistry, 2003, 22, 501-511.	1.1	9
254	Measurement of the sign and the magnitude of heteronuclear coupling constants from spin-state-editedJ-cross-polarization NMR experiments. Magnetic Resonance in Chemistry, 2004, 42, 852-862.	1.9	9
255	Simultaneous Recording of Spin-State-Selective NMR Spectra for Different InS Spin Systems. Journal of the American Chemical Society, 2004, 126, 9821-9826.	13.7	9
256	Exploring the Versatility of <i>N</i> -Pyrazole, <i>P</i> -Phosphinite Hybrid Ligands against Pd(II). From Monomers and Dimers to One-Dimensional Chain, Two-Dimensional Layer Polymers and Three-Dimensional Networks. Crystal Growth and Design, 2012, 12, 6234-6242.	3.0	9
257	Carbon Multiplicity Editing in Long-Range Heteronuclear Correlation NMR Experiments: A Valuable Tool for the Structure Elucidation of Natural Products. Journal of Natural Products, 2015, 78, 2236-2241.	3.0	9
258	Dissimilar catalytic behavior of molecular or colloidal palladium systems with a new NHC ligand. Dalton Transactions, 2017, 46, 11768-11778.	3.3	9
259	Current developments in homonuclear and heteronuclear <i>J</i> i>â€resolved NMR experiments. Magnetic Resonance in Chemistry, 2018, 56, 230-250.	1.9	9
260	Broadband homodecoupled time-shared 1H-13C and 1H-15N HSQC experiments. Journal of Magnetic Resonance, 2019, 298, 23-30.	2.1	9
261	Determination of long-range1Hii£i13C coupling constants of cis-verbenol by modified 2DJ spectroscopy. Magnetic Resonance in Chemistry, 1992, 30, 823-827.	1.9	8
262	Multiple comparison of primary structure of the osmoregulatory Na+/myo-inositol cotransporter from bovine, human, and canine species. Mammalian Genome, 1996, 7, 252-252.	2.2	8
263	Sensitivity Improvements in Selective1H–13C 1D Polarization-Transfer Schemes. Journal of Magnetic Resonance, 1997, 126, 278-282.	2.1	8
264	Synthesis and characterisation of optically active spiro [4.5] decanes. Journal of the Chemical Society Perkin Transactions 1, 1998, , 3837-3844.	0.9	8
265	Rhodiumâ€Catalyzed [2+2+2] Cycloadditions of Diynes with Morita–Baylis–Hillman Adducts: A Stereoselective Entry to Densely Functionalized Cyclohexadiene Scaffolds. Advanced Synthesis and Catalysis, 2016, 358, 1848-1853.	4.3	8
266	Novel Heteroleptic Ruthenium(II) Complexes with $2,2\hat{a}\in^2$ - Bipyridines Containing a Series of Electron-Donor and Electron-Acceptor Substituents in $4,4\hat{a}\in^2$ -Positions: Syntheses, Characterization, and Application as Sensitizers for ZnO Nanowire-Based Solar Cells. ACS Omega, 2020, 5, 8097-8107.	3.5	8
267	Gradient-Based Editing of Proton Spectra According to Carbon-13 Multiplicities. Journal of Magnetic Resonance Series B, 1995, 109, 88-92.	1.6	7
268	Modern proton-detected 1D1H-15N NMR experiments. Application to the measurement of1H,15N coupling constants at natural abundance. Magnetic Resonance in Chemistry, 2002, 40, 133-138.	1.9	7
269	New Aldehydes by Catalytic Diene Cycloisomerisations. European Journal of Organic Chemistry, 2008, 2008, 1214-1223.	2.4	7
270	Structural Differences between Open-Chain and Macrocyclic Triene Ligands for Palladium(0): Influence on the Stability and Catalytical Properties. Organometallics, 2008, 27, 5768-5776.	2.3	7

#	Article	IF	CITATIONS
271	Simultaneous determination of the magnitude and the sign of multiple heteronuclear coupling constants in $\langle sup \rangle 19 \langle sup \rangle 31 \langle sup \rangle 19 \langle sup \rangle 31 \langle sup \rangle 9$ -containing compounds. Magnetic Resonance in Chemistry, 2015, 53, 427-432.	1.9	7
272	2 J HH -resolved HSQC: Exclusive determination of geminal proton-proton coupling constants. Journal of Magnetic Resonance, 2017, 282, 18-26.	2.1	7
273	Simultaneous acquisition of two 2D HSQC spectra with different 13C spectral widths. Journal of Magnetic Resonance, 2019, 300, 1-7.	2.1	7
274	How to measure longâ€range protonâ€carbon coupling constants from ¹ Hâ€selective HSQMBC experiments. Magnetic Resonance in Chemistry, 2020, 58, 363-375.	1.9	7
275	31P-NMR Metabolomics Revealed Species-Specific Use of Phosphorous in Trees of a French Guiana Rainforest. Molecules, 2020, 25, 3960.	3.8	7
276	Evidence of Enantiomers of Spiroglycol. Distinction by Using $\hat{l}\pm,\hat{l}\pm\hat{a}\in^2$ -Bis(trifluoromethyl)-9,10-anthracenedimethanol as a Chiral Solvating Agent and by Derivatization with Chiral Acids. Journal of Organic Chemistry, 2020, 85, 7247-7257.	3.2	7
277	Use of 3J(13C,1H) in the stereochemical assignment of lactonic norbornene derivatives. Magnetic Resonance in Chemistry, 1992, 30, 1084-1088.	1.9	6
278	Increasing transmission of electronic interaction in dinuclear unsymmetric mixed-valent ruthenium complexes. Polyhedron, 2007, 26, 17-23.	2.2	6
279	Selective 1D HCH experiment: a fast NMR tool that connect protons belonging to different spin systems. Magnetic Resonance in Chemistry, 2011, 49, 301-306.	1.9	6
280	A new mild synthetic route to N-arylated pyridazinones from aryldiazonium salts. Chemical Communications, 2014, 50, 8073-8076.	4.1	6
281	Mono―and Dinuclear Complexes of Tricarbonylrhenium(I) with 4â€Methylâ€2,2â€2â€bipyridineâ€4â€2â€carbon European Journal of Inorganic Chemistry, 2014, 2014, 3359-3369.	itrile. 2.0	6
282	Mononuclear ruthenium compounds bearing N-donor and N-heterocyclic carbene ligands: structure and oxidative catalysis. Dalton Transactions, 2017, 46, 2829-2843.	3.3	6
283	Incorporating BIRD-based homodecoupling in the dual-optimized, inverted1JCC1,n-ADEQUATE experiment. Magnetic Resonance in Chemistry, 2018, 56, 1029-1036.	1.9	6
284	Model-based optimization of the enzymatic aldol addition of propanal to formaldehyde: A first step towards enzymatic synthesis of 3-hydroxybutyric acid. Chemical Engineering Research and Design, 2019, 150, 140-152.	5.6	6
285	Straightforward supramolecular purification of C ₈₄ from a fullerene extract. Organic Chemistry Frontiers, 2021, 8, 4101-4105.	4.5	6
286	First experimental determination of two-bond 13C isotopic effects on 1H NMR chemical shifts. Tetrahedron Letters, 2008, 49, 2562-2565.	1.4	5
287	Simultaneous measurement of J(HH) and two different ⁿ J(CH) coupling constants from a single multiply edited 2D crossâ€peak. Magnetic Resonance in Chemistry, 2013, 51, 397-402.	1.9	5
288	Highly resolved HSQC experiments for the fast and accurate measurement of homonuclear and heteronuclear coupling constants. Journal of Magnetic Resonance, 2017, 282, 54-61.	2.1	5

#	Article	IF	CITATIONS
289	Multiplicityâ€edited <scp>¹Hâ€¹H TOCSY</scp> experiment. Magnetic Resonance in Chemistry, 2018, 56, 976-982.	1.9	5
290	LR-HSQMBC versus LR-selHSQMBC: Enhancing the Observation of Tiny Long-Range Heteronuclear NMR Correlations. Journal of Natural Products, 2020, 83, 1275-1282.	3.0	5
291	Gradient-enhanced 1D HMQC- and HSQC-relayed experiments with maximum sensitivity. Magnetic Resonance in Chemistry, 2001, 39, 311-315.	1.9	4
292	Measurement of coupling constants in symmetrical spin systems using a full multiple-step cross-polarization-driven NMR pulse scheme. Magnetic Resonance in Chemistry, 2005, 43, 979-984.	1.9	4
293	Spectroscopic, electrochemical and computational studies of rhenium(I) and ruthenium(II) complexes incorporating the novel tetradentate ligand 1,4-bis(4-($4\hat{a}\in^2$ -methyl)-2,2 $\hat{a}\in^2$ -bipyridyl)-2,3-diaza-1,3-butadiene (BBDB) and its derivatives. Polyhedron, 2014, 70, 20-28.	2.2	4
294	Optimized polarization build-up times in dissolution DNP-NMR using a benzyl amino derivative of BDPA. RSC Advances, 2016, 6, 27077-27082.	3.6	4
295	Isotropic/Anisotropic NMR Editing by Resolutionâ€Enhanced NMR Spectroscopy. ChemPhysChem, 2018, 19, 1024-1029.	2.1	4
296	A novel mononuclear complex of $4,4\hat{a}\in^3$ -azobis- $(2,2\hat{a}\in^2$ -bipyridine) coordinated to tetracyanoruthenium(II) can behave as a $\hat{a}\in$ emolecular switch $\hat{a}\in$ Polyhedron, 2019, 174, 114149.	2.2	4
297	Longâ€range ¹ H ¹ H NMR correlation: extending connectivities to remote bonds via an intermediate heterospin. Magnetic Resonance in Chemistry, 2008, 46, 464-470.	1.9	3
298	Improved NMR methods for the direct ¹³ Câ€satelliteâ€selective excitation in overlapped ¹ Hâ€NMR spectra. Magnetic Resonance in Chemistry, 2009, 47, 121-132.	1.9	3
299	Structural and Stereochemical Assignment of Some Diastereoisomeric Oxaspiro [4.4] nonane Derivatives., 1996, 34, 983-988.		2
300	Novel selective 1D experiments based on heteronuclearJ cross-polarization., 1999, 37, 631-636.		2
301	Synthesis and structure of a chiral dinuclear palladium(0) complex with a 30-membered hexaolefinic macrocyclic ligand. Journal of Organometallic Chemistry, 2007, 692, 2997-3004.	1.8	2
302	Synthesis and structural characterization of a new chiral macrocycle derived from $\hat{l}\pm,\hat{l}\pm\hat{a}\in^2$ -(bistrifluoromethyl)-9,10-anthracendimethanol and terephthalic acid. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 419-426.	1.6	2
303	â€~Stilbene to Phenanthrene' Type Photocyclization of a Bisâ€(4â€Anthryl) Ethylene. A New Access to the Dibenzopicene Skeleton. Bulletin Des Sociétés Chimiques Belges, 1992, 101, 513-517.	0.0	2
304	Chapter 5 Groesy, gradient-enhanced selective 1D roe measurements. Analytical Spectroscopy Library, 1997, , 107-119.	0.1	1
305	Preparation, structural and conformational study of cyclobis[(R,R)-α,α′-bis(trifluoromethyl)-9,10-anthracenedimethylsulphite]. Tetrahedron: Asymmetry, 2002, 13, 1231-1236.	1.8	1
306	LRâ€selHSQMBC: Simultaneous Detection and Quantification of Very Weak Longâ€Range Heteronuclear NMR Correlations. ChemPhysChem, 2020, 21, 280-283.	2.1	1

#	Article	IF	CITATIONS
307	A general building block to introduce carbon multiplicity information into multiâ€dimensional HSQCâ€type experiments. Magnetic Resonance in Chemistry, 1998, 36, 715-719.	1.9	1
308	Palladium(0)-Catalyzed Synthesis of 2-Vinyl-2,3-dihydro-benzo[1,4]dioxins. European Journal of Organic Chemistry, 1999, 1999, 2665-2673.	2.4	1
309	BENZODIHYDROFURANS IN THE RESINOUS EXUDATE FROM DIPLOSTEPHIUM CINEREUM. Journal of the Chilean Chemical Society, 2001, 46, .	0.1	1
310	Title is missing!. Angewandte Chemie, 2002, 114, 4549-4549.	2.0	0
311	Photocycloaddition of (Z)-1,2-Dichloroethylene to Enantiopure 2(5H)-Furanones: An Efficient Strategy for the Diastereoselective Synthesis of Cyclobutane and Cyclobutene Derivatives Chemlnform, 2003, 34, no.	0.0	0
312	Broadband1H homodecoupled NMR experiments: Recent developments, methods and applications. Magnetic Resonance in Chemistry, 2015, 53, ii-ii.	1.9	0
313	Titelbild: Nucleophile Promiscuity of Engineered Classâ€II Pyruvate Aldolase YfaU from <i>E.â€Coli</i> (Angew. Chem. 14/2018). Angewandte Chemie, 2018, 130, 3581-3581.	2.0	0
314	Current developments in homonuclear and heteronuclear J -resolved NMR experiments. Magnetic Resonance in Chemistry, 2018, 56, 229-229.	1.9	0
315	Response to Comment on "Direct Monitoring of Exogenous γ-Hydroxybutyric Acid in Body Fluids by NMR Spectroscopy― Several Issues to Consider When Quantifying γ-Hydroxybutyric Acid in Biological Matrixes. Analytical Chemistry, 2018, 90, 1046-1047.	6.5	0
316	NMR Spectroscopy, Applications, Small Molecule Structuring Strategies. , 2018, , 386-386.		0
317	Simultaner enantiospezifischer Nachweis mehrerer Verbindungen in Mischungen mittels NMRâ€Spektroskopie. Angewandte Chemie, 2020, 132, 23821-23826.	2.0	0
318	Synthesis and characterization of novel homo- and heterobimetallic palladium(0) and platinum(0) complexes of olefinic bismacrocyclic ligands. Arkivoc, 2009, 2010, 203-215.	0.5	0