

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3311781/publications.pdf Version: 2024-02-01

VI VII

#	Article	IF	CITATIONS
1	Rice stripe virus activates the bZIP17/28 branch of the unfolded protein response signalling pathway to promote viral infection. Molecular Plant Pathology, 2022, 23, 447-458.	4.2	10
2	An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. Plant Cell, 2022, 34, 1822-1843.	6.6	16
3	A new distinct geminivirus causes soybean stay-green disease. Molecular Plant, 2022, 15, 927-930.	8.3	17
4	Synergism Among the Four Tobacco Bushy Top Disease Casual Agents in Symptom Induction and Aphid Transmission. Frontiers in Microbiology, 2022, 13, 846857.	3.5	3
5	NSvc4 Encoded by Rice Stripe Virus Targets Host Chloroplasts to Suppress Chloroplast-Mediated Defense. Viruses, 2022, 14, 36.	3.3	6
6	The unfolded protein response plays dual roles in rice stripe virus infection through fine-tuning the movement protein accumulation. PLoS Pathogens, 2021, 17, e1009370.	4.7	15
7	Development of a Mini-Replicon-Based Reverse-Genetics System for Rice Stripe Tenuivirus. Journal of Virology, 2021, 95, e0058921.	3.4	8
8	Cytoplasmic and nuclear Swâ€5b NLR act both independently and synergistically to confer full host defense against tospovirus infection. New Phytologist, 2021, 231, 2262-2281.	7.3	15
9	<i>Rice stripe virus</i> : Exploring Molecular Weapons in the Arsenal of a Negative-Sense RNA Virus. Annual Review of Phytopathology, 2021, 59, 351-371.	7.8	46
10	Identification of two novel poleroviruses and the occurrence of Tobacco bushy top disease causal agents in natural plants. Scientific Reports, 2021, 11, 21045.	3.3	11
11	Dynamic Transcriptional Profiles of <i>Arabidopsis thaliana</i> Infected by <i>Tomato spotted wilt virus</i> . Phytopathology, 2020, 110, 153-163.	2.2	25
12	Viral Small RNA-Based Screening of <i>Malus</i> spp. Reveals Citrus Leaf Blotch Virus Infection of Kaido Crab Apple in China. Plant Disease, 2020, 104, 3272-3272.	1.4	4
13	Transmission modes affect the population structure of potato virus Y in potato. PLoS Pathogens, 2020, 16, e1008608.	4.7	31
14	Aphids and their transmitted potato viruses: A continuous challenges in potato crops. Journal of Integrative Agriculture, 2020, 19, 367-375.	3.5	26
15	Plant Viruses Transmitted in Two Different Modes Produce Differing Effects on Small RNA-Mediated Processes in Their Aphid Vector. Phytobiomes Journal, 2019, 3, 71-81.	2.7	16
16	A Stem-Loop Structure in <i>Potato Leafroll Virus</i> Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream. Journal of Virology, 2018, 92, .	3.4	33
17	Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. Molecular Plant, 2018, 11, 269-287.	8.3	109
18	Complete genome sequence of a lettuce chlorosis virus isolate from China and genome recombination/rearrangement analysis. Archives of Virology, 2018, 163, 751-754.	2.1	7

Yı Xu

#	Article	IF	CITATIONS
19	An aromatic amino acid and associated helix in the C-terminus of the potato leafroll virus minor capsid protein regulate systemic infection and symptom expression. PLoS Pathogens, 2018, 14, e1007451.	4.7	19
20	The Interaction Dynamics of Two Potato Leafroll Virus Movement Proteins Affects Their Localization to the Outer Membranes of Mitochondria and Plastids. Viruses, 2018, 10, 585.	3.3	22
21	Discovery and small RNA profile of Pecan mosaic-associated virus, a novel potyvirus of pecan trees. Scientific Reports, 2016, 6, 26741.	3.3	12
22	Rice Stripe Tenuivirus Nonstructural Protein 3 Hijacks the 26S Proteasome of the Small Brown Planthopper via Direct Interaction with Regulatory Particle Non-ATPase Subunit 3. Journal of Virology, 2015, 89, 4296-4310.	3.4	36
23	Analysis of genetic variation and diversity of Rice stripe virus populations through high-throughput sequencing. Frontiers in Plant Science, 2015, 6, 176.	3.6	37
24	Identification of Hop stunt viroid infecting Citrus limon in China using small RNAs deep sequencing approach. Virology Journal, 2015, 12, 103.	3.4	12
25	Interaction between Rice stripe virus Disease-Specific Protein and Host PsbP Enhances Virus Symptoms. Molecular Plant, 2014, 7, 691-708.	8.3	153
26	Rice Stripe Tenuivirus NSvc2 Glycoproteins Targeted to the Golgi Body by the N-Terminal Transmembrane Domain and Adjacent Cytosolic 24 Amino Acids via the COP I- and COP II-Dependent Secretion Pathway. Journal of Virology, 2014, 88, 3223-3234.	3.4	42
27	Identification of Himetobi P virus in the small brown planthopper by deep sequencing and assembly of virus-derived small interfering RNAs. Virus Research, 2014, 179, 235-240.	2.2	20
28	Genomic Insights into the Glutathione S-Transferase Gene Family of Two Rice Planthoppers, Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). PLoS ONE, 2013, 8, e56604.	2.5	73
29	Role of rice stripe virus NSvc4 in cell-to-cell movement and symptom development in Nicotiana benthamiana. Frontiers in Plant Science, 2012, 3, 269.	3.6	36
30	Population Diversity of Rice Stripe Virus-Derived siRNAs in Three Different Hosts and RNAi-Based Antiviral Immunity in Laodelphgax striatellus. PLoS ONE, 2012, 7, e46238.	2.5	94
31	Transcriptome and Comparative Gene Expression Analysis of Sogatella furcifera (Horváth) in Response to Southern Rice Black-Streaked Dwarf Virus. PLoS ONE, 2012, 7, e36238.	2.5	79
32	V2 protein encoded by Tomato yellow leaf curl China virus is an RNA silencing suppressor. Virus Research, 2012, 163, 51-58.	2.2	77
33	Size-Independent and Noncooperative Recognition of dsRNA by the Rice Stripe Virus RNA Silencing Suppressor NS3. Journal of Molecular Biology, 2010, 404, 665-679.	4.2	45