Viktor V Korokhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3310758/publications.pdf

Version: 2024-02-01

43 papers

823 citations

15 h-index 28 g-index

44 all docs 44 docs citations

44 times ranked 623 citing authors

#	Article	IF	CITATIONS
1	Photometric analysis of the Luna spacecraft landing sites. Planetary and Space Science, 2022, 216, 105475.	1.7	4
2	Characterizing southern portion of Mare Vaporum with improved Chandrayaan-1ÂM3 data. Icarus, 2021, 355, 114123.	2.5	3
3	Lunar ilmenite content as assessed by improved Chandrayaan-1 M3 data. Icarus, 2020, 341, 113661.	2.5	8
4	Analysis of full-disc Ca II K spectroheliograms. Astronomy and Astrophysics, 2020, 639, A88.	5.1	32
5	Removal of topographic effects from LROC NAC images as applied to the inner flank of the crater Hertzsprung S. Planetary and Space Science, 2020, 193, 105090.	1.7	6
6	Improved Chandrayaan-1 M3 data: A northwest portion of the Aristarchus Plateau and contiguous maria. Icarus, 2019, 321, 34-49.	2.5	5
7	A twofold mission to the moon: Objectives and payloads. Acta Astronautica, 2019, 154, 214-226.	3.2	13
8	Surface erosion and sedimentation caused by ejecta from the lunar crater Tycho. Planetary and Space Science, 2018, 151, 130-140.	1.7	5
9	Characterizing dark mantle deposits in the lunar crater Alphonsus. Planetary and Space Science, 2018, 153, 22-38.	1.7	3
10	A photometric function of planetary surfaces for gourmets. Icarus, 2018, 302, 213-236.	2.5	13
11	The lunar surface around extremely fresh craters. Icarus, 2018, 311, 258-270.	2.5	6
12	Using LROC WAC data for Lunar surface photoclinometry. Planetary and Space Science, 2018, 160, 120-135.	1.7	9
13	Phase-ratio imaging as applied to desert sands for tracking human presence. Applied Optics, 2017, 56, B184.	2.1	4
14	Comparison of lunar red spots including the crater copernicus. Icarus, 2016, 272, 125-139.	2.5	10
15	Opposition effect of the Moon from LROC WAC data. Icarus, 2016, 275, 1-15.	2.5	19
16	Characterization of a photometric anomaly in lunar Mare Nubium. Planetary and Space Science, 2016, 122, 70-87.	1.7	18
17	Gas giant planets, Saturn's rings, and Titan. , 2015, , 320-339.		4
18	Retrieving lunar topography from multispectral LROC images. Planetary and Space Science, 2014, 92, 65-76.	1.7	13

#	Article	IF	Citations
19	Lunar opposition effect as inferred from Chandrayaanâ€1 M ³ data. Journal of Geophysical Research E: Planets, 2013, 118, 1221-1232.	3.6	18
20	Response to the comment by B. Hapke on "A critical assessment of the Hapke photometric modelâ€. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 116, 191-195.	2.3	16
21	A critical assessment of the Hapke photometric model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 2431-2456.	2.3	68
22	Optical measurements of the Moon as a tool to study its surface. Planetary and Space Science, 2011, 59, 1326-1371.	1.7	201
23	Distribution of the spectropolarimetric parameter of the moon in the northern part of Ocean Procellarum for a large phase angle. Kinematics and Physics of Celestial Bodies, 2011, 27, 38-41.	0.6	0
24	Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter. lcarus, 2011, 211, 89-96.	2.5	52
25	New Earth-based absolute photometry of the Moon. Icarus, 2011, 214, 30-45.	2.5	59
26	The phase ratios of the color index: Mapping of two regions of the near side of the Moon. Solar System Research, 2010, 44, 267-280.	0.7	20
27	Probable swirls detected as photometric anomalies in Oceanus Procellarum. Icarus, 2010, 208, 20-30.	2.5	38
28	Removal of topographic effects from lunar images using Kaguya (LALT) and Earth-based observations. Planetary and Space Science, 2010, 58, 1298-1306.	1.7	12
29	10.1007/s11208-008-1002-3. , 2010, 42, 8.		0
30	Photometric function variations observed on the near side of the Moon: Mapping. Solar System Research, 2009, 43, 89-99.	0.7	15
31	The negative polarization parameters of the light scattered by the lunar surface: Mapping. Solar System Research, 2009, 43, 210-214.	0.7	4
32	Prognosis of TiO2 abundance in lunar soil using a non-linear analysis of Clementine and LSCC data. Planetary and Space Science, 2008, 56, 1063-1078.	1.7	36
33	Polarimetric mapping of the Moon at a phase angle near the polarization minimum. Icarus, 2008, 198 , $1-6$.	2.5	11
34	The north-south asymmetry of polarization of Jupiter: The causes of seasonal variations. Solar System Research, 2008, 42, 8-17.	0.7	7
35	Photopolarimetric observations of Jupiter's polar region. Kinematics and Physics of Celestial Bodies, 2008, 24, 201-208.	0.6	0
36	The phase dependence of brightness and color of the lunar surface: a study based on integral photometric data. Solar System Research, 2007, 41, 19-27.	0.7	18

#	Article	IF	CITATIONS
37	Multispectral polarimetry as a tool to investigate texture and chemistry of lunar regolith particles. lcarus, 2007, 187, 406-416.	2.5	36
38	Quasi-periodicity of MgXII X-ray bursts revealed by CORONAS-F SPIRIT data for solar active regions. Astronomy Reports, 2005, 49, 579-586.	0.9	3
39	Parameters of the positive polarization maximum of the Moon: mapping. Solar System Research, 2005, 39, 45-53.	0.7	8
40	Parameters of the positive polarization maximum of the Moon: Mapping. Solar System Research, 2005, 39, 45-53.	0.7	6
41	Seasonal Variations in the North–South Asymmetry of Polarized Light of Jupiter. Icarus, 2002, 157, 419-425.	2.5	12
42	CCD observations of the Sun at the Balmer and Pashen continua. Astronomical and Astrophysical Transactions, 1999, 18, 265-271.	0.2	0
43	Temporal changes in the north-south asymmetry of polarized light of Jupiter may be associated with the comet SL9 visit to the Jovian system. Planetary and Space Science, 1997, 45, 1183-1188.	1.7	2