Hannes F Paulus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3309926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Color preference and spatial distribution of glaphyrid beetles suggest a key role in the maintenance of the color polymorphism in the peacock anemone (Anemone pavonina, Ranunculaceae) in Northern Greece. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 735-743.	1.6	23
2	Speciation, pattern recognition and the maximization of pollination: general questions and answers given by the reproductive biology of the orchid genus Ophrys. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 285-300.	1.6	16
3	Pollinators as isolation mechanisms: field observations and field experiments regarding specificity of pollinator attraction in the genus Ophrys (Orchidaceae und Insecta, Hymenoptera, Apoidea). Entomologia Generalis, 2018, 37, 261-316.	3.1	13
4	Does <i>Traunsteinera globosa</i> (the globe orchid) dupe its pollinators through generalized food deception or mimicry?. Botanical Journal of the Linnean Society, 2016, 180, 269-294.	1.6	25
5	Species boundaries in the Ophrys iricolor group in Tunisia: do local endemics always matter?. Plant Systematics and Evolution, 2016, 302, 481-489.	0.9	7

6 Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542

7	Floral visual signal increases reproductive success in a sexually deceptive orchid. Arthropod-Plant Interactions, 2012, 6, 671-681.	1.1	23
8	Why sexually deceptive orchids have colored flowers. Communicative and Integrative Biology, 2010, 3, 139-141.	1.4	28
9	Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. Journal of Experimental Biology, 2009, 212, 1365-1370.	1.7	86
10	Scent variation and hybridization cause the displacement of a sexually deceptive orchid species. American Journal of Botany, 2008, 95, 472-481.	1.7	61
11	A screen of low opy nuclear genes reveals the <i>LFY</i> gene as phylogenetically informative in closely related species of orchids (<i>Ophrys</i>). Taxon, 2007, 56, 493-504.	0.7	31
12	Oviposition Behavior of Interacting Predatory Mites: Response to the Presence of Con- and Heterospecific Eggs. Journal of Insect Behavior, 2006, 19, 305-320.	0.7	25
13	Making the first step: practical considerations for the isolation of lowâ€copy nuclear sequence markers. Taxon, 2005, 54, 766-770.	0.7	11
14	Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 517-522.	2.6	215
15	EVOLUTION OF REPRODUCTIVE STRATEGIES IN THE SEXUALLY DECEPTIVE ORCHID OPHRYS SPHEGODES: HOW DOES FLOWER-SPECIFIC VARIATION OF ODOR SIGNALS INFLUENCE REPRODUCTIVE SUCCESS?. Evolution; International Journal of Organic Evolution, 2000, 54, 1995-2006.	2.3	191
16	Orchid pollination by sexual swindle. Nature, 1999, 399, 421-421.	27.8	398
17	Variation of Floral Scent Emission and Postpollination Changes in Individual Flowers of Ophrys sphegodes Subsp. sphegodes. Journal of Chemical Ecology, 1997, 23, 2881-2895.	1.8	118
18	Speciation in sexually deceptive orchids: pollinator-driven selection maintains discrete odour phenotypes in hybridizing species. Biological Journal of the Linnean Society, 0, 98, 439-451.	1.6	37