Horacio D Espinosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3308842/publications.pdf

Version: 2024-02-01

22099 25716 12,568 182 59 108 citations h-index g-index papers 197 197 197 11266 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 2008, 3, 626-631.	15.6	972
2	Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials. Progress in Materials Science, 2009, 54, 1059-1100.	16.0	659
3	An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl. Experimental Mechanics, 2007, 47, 311-324.	1.1	415
4	Elasticity Size Effects in ZnO Nanowiresâ^'A Combined Experimental-Computational Approach. Nano Letters, 2008, 8, 3668-3674.	4.5	378
5	Nanoelectromechanical contact switches. Nature Nanotechnology, 2012, 7, 283-295.	15.6	355
6	Mechanical properties of nacre constituents and their impact on mechanical performance. Journal of Materials Research, 2006, 21, 1977-1986.	1.2	334
7	An electromechanical material testing system for in situ electron microscopy and applications. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14503-14508.	3.3	328
8	Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Communications, 2011, 2, 173.	5.8	324
9	A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation. Mechanics of Materials, 2003, 35, 333-364.	1.7	310
10	Giant Piezoelectric Size Effects in Zinc Oxide and Gallium Nitride Nanowires. A First Principles Investigation. Nano Letters, 2011, 11, 786-790.	4.5	267
11	A thermal actuator for nanoscalein situmicroscopy testing: design and characterization. Journal of Micromechanics and Microengineering, 2006, 16, 242-253.	1.5	262
12	A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires. Advanced Materials, 2012, 24, 4656-4675.	11.1	259
13	Ultrahigh Strength and Stiffness in Crossâ€Linked Hierarchical Carbon Nanotube Bundles. Advanced Materials, 2011, 23, 2855-2860.	11.1	213
14	Experimental-Computational Investigation of ZnO nanowires Strength and Fracture. Nano Letters, 2009, 9, 4177-4183.	4.5	189
15	Optimal Length Scales Emerging from Shear Load Transfer in Natural Materials: Application to Carbon-Based Nanocomposite Design. ACS Nano, 2012, 6, 2333-2344.	7.3	186
16	Mechanics of Crystalline Nanowires. MRS Bulletin, 2009, 34, 178-183.	1.7	166
17	Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films. Journal of Physics Condensed Matter, 2004, 16, R539-R552.	0.7	162
18	Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization. Journal of Microelectromechanical Systems, 2007, 16, 1219-1231.	1.7	159

#	Article	IF	CITATIONS
19	A finite deformation continuumdiscrete model for the description of fragmentation and damage in brittle materials. Journal of the Mechanics and Physics of Solids, 1998, 46, 1909-1942.	2.3	154
20	Size effects on the mechanical behavior of gold thin films. Journal of Materials Science, 2003, 38, 4125-4128.	1.7	153
21	A Nanofountain Probe with Sub-100â€nm Molecular Writing Resolution. Small, 2005, 1, 632-635.	5.2	145
22	A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading. Experimental Mechanics, 2006, 46, 805-824.	1.1	145
23	A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples. Mechanics of Materials, 2003, 35, 365-394.	1.7	133
24	Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D. Nano Letters, 2012, 12, 970-976.	4.5	125
25	Dislocation-Source Shutdown and the Plastic Behavior of Single-Crystal Micropillars. Physical Review Letters, 2008, 100, 185503.	2.9	122
26	A Multiscale Study of High Performance Double-Walled Nanotubeâ^'Polymer Fibers. ACS Nano, 2010, 4, 6463-6476.	7.3	120
27	A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Applied Physics Letters, 2005, 86, 013506.	1.5	119
28	Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation. ACS Nano, 2016, 10, 1820-1828.	7.3	112
29	Extreme lightweight structures: avian feathers and bones. Materials Today, 2017, 20, 377-391.	8.3	104
30	Bio-Inspired Carbon Nanotube–Polymer Composite Yarns with Hydrogen Bond-Mediated Lateral Interactions. ACS Nano, 2013, 7, 3434-3446.	7.3	103
31	Nanofountain Probe Electroporation (NFP-E) of Single Cells. Nano Letters, 2013, 13, 2448-2457.	4.5	102
32	Nucleationâ€Controlled Distributed Plasticity in Pentaâ€twinned Silver Nanowires. Small, 2012, 8, 2986-2993.	5.2	101
33	Fracture strength of ultrananocrystalline diamond thin films—identification of Weibull parameters. Journal of Applied Physics, 2003, 94, 6076-6084.	1.1	98
34	Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism. Nature Communications, 2015, 6, 8029.	5.8	95
35	Numerical Analysis of Nanotube Based NEMS Devices â€" Part II: Role of Finite Kinematics, Stretching and Charge Concentrations. Journal of Applied Mechanics, Transactions ASME, 2005, 72, 726-731.	1.1	94
36	Effect of Growth Orientation and Diameter on the Elasticity of GaN Nanowires. A Combined in Situ TEM and Atomistic Modeling Investigation. Nano Letters, $2011, 11, 548-555$.	4.5	85

#	Article	IF	CITATIONS
37	Combined Numerical and Experimental Investigation of Localized Electroporation-Based Cell Transfection and Sampling. ACS Nano, 2018, 12, 12118-12128.	7.3	85
38	Failure mechanisms in composite panels subjected to underwater impulsive loads. Journal of the Mechanics and Physics of Solids, 2011, 59, 1623-1646.	2.3	84
39	Extraordinary Improvement of the Graphitic Structure of Continuous Carbon Nanofibers Templated with Double Wall Carbon Nanotubes. ACS Nano, 2013, 7, 126-142.	7.3	84
40	Mechanical characterization of materials at small length scales. Journal of Mechanical Science and Technology, 2012, 26, 545-561.	0.7	82
41	MEMS for <i>In Situ</i> Testing—Handling, Actuation, Loading, and Displacement Measurements. MRS Bulletin, 2010, 35, 375-381.	1.7	81
42	Pushing the Envelope of <i>In Situ</i> Transmission Electron Microscopy. ACS Nano, 2015, 9, 4675-4685.	7.3	80
43	In Situ TEM Electromechanical Testing of Nanowires and Nanotubes. Small, 2012, 8, 3233-3252.	5.2	79
44	Three-dimensional numerical modeling of composite panels subjected to underwater blast. Journal of the Mechanics and Physics of Solids, 2013, 61, 1319-1336.	2.3	78
45	Inâ€Situ Electron Microscopy Electromechanical Characterization of a Bistable NEMS Device. Small, 2006, 2, 1484-1489.	5.2	75
46	Characterizing Atomic Composition and Dopant Distribution in Wide Band Gap Semiconductor Nanowires Using Laser-Assisted Atom Probe Tomography. Journal of Physical Chemistry C, 2011, 115, 17688-17694.	1.5	75
47	Effect of temperature on capacitive RF MEMS switch performance—a coupled-field analysis. Journal of Micromechanics and Microengineering, 2004, 14, 1270-1279.	1.5	74
48	Nanofountainâ€Probeâ€Based Highâ€Resolution Patterning and Singleâ€Cell Injection of Functionalized Nanodiamonds. Small, 2009, 5, 1667-1674.	5.2	74
49	Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices. Experimental Mechanics, 2003, 43, 256-268.	1.1	71
50	Feedback controlled nanocantilever device. Applied Physics Letters, 2004, 85, 681-683.	1.5	71
51	The desmoplakin–intermediate filament linkage regulates cell mechanics. Molecular Biology of the Cell, 2017, 28, 3156-3164.	0.9	70
52	The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide. ACS Nano, 2018, 12, 6089-6099.	7.3	70
53	Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon. Applied Physics Letters, 2006, 89, 073111.	1.5	69
54	Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures. Experimental Mechanics, 2007, 47, 7-24.	1.1	69

#	Article	IF	Citations
55	Key Factors Limiting Carbon Nanotube Yarn Strength: Exploring Processing-Structure-Property Relationships. ACS Nano, 2014, 8, 11454-11466.	7.3	68
56	An atomistic investigation of elastic and plastic properties of Au nanowires. Jom, 2005, 57, 62-66.	0.9	67
57	Numerical Analysis of Nanotube-Based NEMS Devicesâ€"Part I: Electrostatic Charge Distribution on Multiwalled Nanotubes. Journal of Applied Mechanics, Transactions ASME, 2005, 72, 721-725.	1.1	67
58	An interpretation of size-scale plasticity in geometrically confined systems. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16933-16938.	3.3	66
59	Microfluidic device for stem cell differentiation and localized electroporation of postmitotic neurons. Lab on A Chip, 2014, 14, 4486-4495.	3.1	62
60	Novel Ultrananocrystalline Diamond Probes for High-Resolution Low-Wear Nanolithographic Techniques. Small, 2005, 1, 866-874.	5.2	61
61	Deformation and Failure Modes of I-Core Sandwich Structures Subjected to Underwater Impulsive Loads. Experimental Mechanics, 2009, 49, 257-275.	1.1	60
62	Engineering the Mechanical Properties of Monolayer Graphene Oxide at the Atomic Level. Journal of Physical Chemistry Letters, 2016, 7, 2702-2707.	2.1	60
63	Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. Acta Biomaterialia, 2017, 64, 1-14.	4.1	60
64	The Potential of MEMS for Advancing Experiments and Modeling in Cell Mechanics. Experimental Mechanics, 2009, 49, 105-124.	1.1	59
65	Adaptive FEM computation of geometric and material nonlinearities with application to brittle failure. Mechanics of Materials, 1998, 29, 275-305.	1.7	58
66	Dimensional analysis and parametric studies for designing artificial nacre. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 190-211.	1.5	58
67	Sustaining dry surfaces under water. Scientific Reports, 2015, 5, 12311.	1.6	56
68	In situ transmission electron microscope tensile testing reveals structure–property relationships in carbon nanofibers. Carbon, 2013, 60, 246-253.	5.4	55
69	Revealing the Mechanics of Helicoidal Composites through Additive Manufacturing and Beetle Developmental Stage Analysis. Advanced Functional Materials, 2018, 28, 1803073.	7.8	55
70	Experimental-Computational Study of Shear Interactions within Double-Walled Carbon Nanotube Bundles. Nano Letters, 2012, 12, 732-742.	4.5	53
71	Multiscale Experimental Mechanics of Hierarchical Carbonâ€Based Materials. Advanced Materials, 2012, 24, 2805-2823.	11.1	52
72	A novel dynamic friction experiment using a modified kolsky bar apparatus. Experimental Mechanics, 2000, 40, 138-153.	1.1	50

#	Article	IF	Citations
73	Electric field-induced direct delivery of proteins by a nanofountain probe. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16438-16443.	3.3	50
74	AFM Identification of Beetle Exocuticle: Bouligand Structure and Nanofiber Anisotropic Elastic Properties. Advanced Functional Materials, 2017, 27, 1603993.	7.8	50
75	Atomistic Investigation of Load Transfer Between DWNT Bundles "Crosslinked―by PMMA Oligomers. Advanced Functional Materials, 2013, 23, 1883-1892.	7.8	48
76	Isolating single cells in a neurosphere assay using inertial microfluidics. Lab on A Chip, 2015, 15, 4591-4597.	3.1	48
77	Stiffening of graphene oxide films by soft porous sheets. Nature Communications, 2019, 10, 3677.	5. 8	48
78	A new rate-dependent unidirectional composite model $\hat{a}\in$ Application to panels subjected to underwater blast. Journal of the Mechanics and Physics of Solids, 2013, 61, 1305-1318.	2.3	47
79	A coarse-grained model for the mechanical behavior of graphene oxide. Carbon, 2017, 117, 476-487.	5.4	47
80	Direct Deposition and Assembly of Gold Colloidal Particles Using a Nanofountain Probe. Langmuir, 2007, 23, 9120-9123.	1.6	46
81	Tailoring the Load Carrying Capacity of MWCNTs Through Inter-shell Atomic Bridging. Experimental Mechanics, 2009, 49, 169-182.	1.1	45
82	Micro- and Nanoscale Technologies for Delivery into Adherent Cells. Trends in Biotechnology, 2016, 34, 665-678.	4.9	44
83	Scaling up single-cell mechanics to multicellular tissues – the role of the intermediate filament–desmosome network. Journal of Cell Science, 2020, 133, .	1.2	42
84	Analysis of Doubly Clamped Nanotube Devices in the Finite Deformation Regime. Journal of Applied Mechanics, Transactions ASME, 2005, 72, 445-449.	1.1	40
85	In Situ Electron Microscopy Fourâ€Point Electromechanical Characterization of Freestanding Metallic and Semiconducting Nanowires. Small, 2014, 10, 725-733.	5.2	40
86	Lessons from the Ocean: Whale Baleen Fracture Resistance. Advanced Materials, 2019, 31, e1804574.	11.1	40
87	Modelling of failure mode transition in ballistic penetration with a continuum model describing microcracking and flow of pulverized media. International Journal for Numerical Methods in Engineering, 2002, 54, 365-398.	1.5	39
88	Study of the Size Effects and Friction Conditions in Microextrusionâ€"Part II: Size Effect in Dynamic Friction for Brass-Steel Pairs. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2007, 129, 677-689.	1.3	39
89	Statistical shear lag model – Unraveling the size effect in hierarchical composites. Acta Biomaterialia, 2015, 18, 206-212.	4.1	39
90	In Situ Scanning Electron Microscope Peeling To Quantify Surface Energy between Multiwalled Carbon Nanotubes and Graphene. ACS Nano, 2014, 8, 124-138.	7.3	37

#	Article	IF	CITATIONS
91	Shear and Friction between Carbon Nanotubes in Bundles and Yarns. Nano Letters, 2014, 14, 6138-6147.	4.5	37
92	Monoclonal Cell Line Generation and CRISPR/Cas9 Manipulation via Singleâ€Cell Electroporation. Small, 2018, 14, e1702495.	5.2	37
93	A multi-ink linear array of nanofountain probes. Journal of Micromechanics and Microengineering, 2006, 16, 1935-1942.	1.5	35
94	Robust Carbonâ€Nanotubeâ€Based Nanoâ€electromechanical Devices: Understanding and Eliminating Prevalent Failure Modes Using Alternative Electrode Materials. Small, 2011, 7, 79-86.	5.2	35
95	Carbon arbon Contacts for Robust Nanoelectromechanical Switches. Advanced Materials, 2012, 24, 2463-2468.	11.1	35
96	USNCTAM perspectives on mechanics in medicine. Journal of the Royal Society Interface, 2014, 11, 20140301.	1.5	35
97	Large-Scale Density Functional Theory Investigation of Failure Modes in ZnO Nanowires. Nano Letters, 2010, 10, 3432-3438.	4.5	33
98	Multiscale Experiments: State of the Art and Remaining Challenges. Journal of Engineering Materials and Technology, Transactions of the ASME, 2009, 131, .	0.8	32
99	Singleâ€Cell Detection of mRNA Expression Using Nanofountainâ€Probe Electroporated Molecular Beacons. Small, 2015, 11, 2386-2391.	5.2	32
100	Double-tilt in situ TEM holder with multiple electrical contacts and its application in MEMS-based mechanical testing of nanomaterials. Ultramicroscopy, 2015, 156, 23-28.	0.8	32
101	Atomically Thin Polymer Layer Enhances Toughness of Graphene Oxide Monolayers. Matter, 2019, 1, 369-388.	5.0	32
102	High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. Small, 2020, 16, e2004917.	5.2	32
103	An energy-based model to predict wear in nanocrystalline diamond atomic force microscopy tips. Journal of Applied Physics, 2009, 106, .	1.1	31
104	Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading. International Journal of Solids and Structures, 2012, 49, 1573-1587.	1.3	31
105	Microfluidics & amp; nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers. RSC Advances, 2014, 4, 55590-55598.	1.7	30
106	Folding at the Microscale: Enabling Multifunctional 3D Origamiâ€Architected Metamaterials. Small, 2020, 16, e2002229.	5.2	30
107	Defectâ€Tolerant Nanocomposites through Bioâ€Inspired Stiffness Modulation. Advanced Functional Materials, 2014, 24, 2883-2891.	7.8	28
108	Multiphysics design and implementation of a microsystem for displacement-controlled tensile testing of nanomaterials. Meccanica, 2015, 50, 549-560.	1.2	28

#	Article	IF	CITATIONS
109	Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation. Experimental Mechanics, 2003, 43, 331-340.	1.1	27
110	Comparison of the Ewald and Wolf methods for modeling electrostatic interactions in nanowires. International Journal for Numerical Methods in Engineering, 2010, 84, 1541-1551.	1.5	27
111	Reliability of Single Crystal Silver Nanowire-Based Systems: Stress Assisted Instabilities. ACS Nano, 2017, 11, 4768-4776.	7.3	26
112	Formulation and validation of a reduced order model of 2D materials exhibiting a two-phase microstructure as applied to graphene oxide. Journal of the Mechanics and Physics of Solids, 2018, 112, 66-88.	2.3	26
113	Molecular-Level Engineering of Adhesion in Carbon Nanomaterial Interfaces. Nano Letters, 2015, 15, 4504-4516.	4.5	25
114	Nonlinear Mode Coupling and One-to-One Internal Resonances in a Monolayer WS ₂ Nanoresonator. Nano Letters, 2019, 19, 4052-4059.	4.5	24
115	Performance of the starâ €s haped flyer in the study of brittle materials: Three dimensional computer simulations and experimental observations. Journal of Applied Physics, 1992, 72, 3451-3457.	1.1	23
116	Dynamic Friction Measurements at Sliding Velocities Representative of High-Speed Machining Processes. Journal of Tribology, 2000, 122, 834-848.	1.0	23
117	Reliability of capacitive RF MEMS switches at high and low temperatures. International Journal of RF and Microwave Computer-Aided Engineering, 2004, 14, 317-328.	0.8	22
118	A new Monte Carlo model for predicting the mechanical properties of fiber yarns. Journal of the Mechanics and Physics of Solids, 2015, 84, 325-335.	2.3	22
119	Nanoscale toughening of ultrathin graphene oxide-polymer composites: mechanochemical insights into hydrogen-bonding/van der Waals interactions, polymer chain alignment, and steric parameters. Nanoscale, 2019, 11, 12305-12316.	2.8	22
120	In-situ AFM Experiments with Discontinuous DIC Applied to Damage Identification in Biomaterials. Experimental Mechanics, 2011, 51, 591-607.	1.1	21
121	Kirigami Engineeringâ€"Nanoscale Structures Exhibiting a Range of Controllable 3D Configurations. Advanced Materials, 2021, 33, e2005275.	11.1	21
122	An experimental/computational approach to identify moduli and residual stress in MEMS radio-frequency switches. Experimental Mechanics, 2003, 43, 309-316.	1.1	19
123	Epitaxially influenced boundary layer model for size effect in thin metallic films. Journal of Applied Physics, 2005, 97, 073506.	1.1	18
124	Reversible Attachment with Tailored Permeability: The Feather Vane and Bioinspired Designs. Advanced Functional Materials, 2017, 27, 1702954.	7.8	18
125	Nanofountain Probe Electroporation Enables Versatile Singleâ€Cell Intracellular Delivery and Investigation of Postpulse Electropore Dynamics. Small, 2020, 16, e2002616.	5.2	17
126	Temporal Sampling of Enzymes from Live Cells by Localized Electroporation and Quantification of Activity by SAMDI Mass Spectrometry. Small, 2020, 16, e2000584.	5.2	17

#	Article	IF	Citations
127	Techniques to stimulate and interrogate cell–cell adhesion mechanics. Extreme Mechanics Letters, 2018, 20, 125-139.	2.0	16
128	Strong piezoelectricity in individual GaN nanowires. MRS Communications, 2011, 1, 45-48.	0.8	15
129	Revealing Layerâ€Specific Ultrastructure and Nanomechanics of Fibrillar Collagen in Human Aorta via Atomic Force Microscopy Testing: Implications on Tissue Mechanics at Macroscopic Scale. Advanced NanoBiomed Research, 2022, 2, .	1.7	15
130	Microfluidic Parallel Patterning and Cellular Delivery of Molecules with a Nanofountain Probe. Journal of the Association for Laboratory Automation, 2014, 19, 100-109.	2.8	14
131	A matter of size? Material, structural and mechanical strategies for size adaptation in the elytra of Cetoniinae beetles. Acta Biomaterialia, 2021, 122, 236-248.	4.1	14
132	Deep Learningâ€Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hardâ€toâ€Transfect Cells. Small, 2022, 18, e2107795.	5.2	14
133	Fracture size effect in ultrananocrystalline diamond: Applicability of Weibull theory. Journal of Materials Research, 2007, 22, 913-925.	1.2	13
134	Magnetically induced micropillar arrays for an ultrasensitive flexible sensor with a wireless recharging system. Science China Materials, 2021, 64, 1977-1988.	3.5	13
135	Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 30-37.	1.5	12
136	Effects of Film Thickness on the Yielding Behavior of Polycrystalline Gold Films. Materials Research Society Symposia Proceedings, 2001, 695, 1.	0.1	11
137	Lessons from tooth enamel. Nature, 2017, 543, 42-43.	13.7	11
138	Programmable 3D structures via Kirigami engineering and controlled stretching. Extreme Mechanics Letters, 2021, 43, 101146.	2.0	11
139	The Evolving Role of Experimental Mechanics in 1-D Nanostructure-Based Device Development. Experimental Mechanics, 2011, 51, 1-9.	1.1	10
140	Deep Learning and Computer Vision Strategies for Automated Gene Editing with a Single-Cell Electroporation Platform. SLAS Technology, 2021, 26, 26-36.	1.0	10
141	Atomistic mechanisms of adhesion and shear strength in graphene oxide-polymer interfaces. Journal of the Mechanics and Physics of Solids, 2021, 156, 104578.	2.3	10
142	High-Throughput Microfluidics Platform for Intracellular Delivery and Sampling of Biomolecules from Live Cells. ACS Nano, 2022, 16, 7937-7946.	7.3	10
143	Shear and tensile plastic behavior of austenitic steel TRIP-120 compared with martensitic steel HSLA-100. International Journal of Fracture, 2010, 162, 187-204.	1.1	9
144	Multi-objective parametrization of interatomic potentials for large deformation pathways and fracture of two-dimensional materials. Npj Computational Materials, 2021, 7, .	3.5	9

#	Article	IF	CITATIONS
145	Mechanical Properties of Ultrananocrystalline Diamond Thin Films for MEMS Applications. Materials Research Society Symposia Proceedings, 2002, 741, 921.	0.1	8
146	Localized electroporation with track-etched membranes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22909-22910.	3.3	8
147	Optimization of nanofountain probe microfabrication enables large-scale nanopatterning. Journal of Micromechanics and Microengineering, 2013, 23, 125014.	1.5	6
148	An Experimental Setup for Combined In-Vacuo Raman Spectroscopy and Cavity-Interferometry Measurements on TMDC Nano-resonators. Experimental Mechanics, 2019, 59, 349-359.	1.1	6
149	Facile fabrication of 2D material multilayers and vdW heterostructures with multimodal microscopy and AFM characterization. Materials Today, 2022, 52, 31-42.	8.3	6
150	Celebrating 50 Years of Experimental Mechanics. Experimental Mechanics, 2010, 50, 1-2.	1.1	4
151	Load Sensor Instability and Optimization of MEMS-based Tensile Testing Devices. Frontiers in Materials, 2019, 6, .	1.2	4
152	In-Situ SEM High Strain Rate Testing of Large Diameter Micropillars Followed by TEM and EBSD Postmortem Analysis. Experimental Mechanics, 2021, 61, 739-752.	1.1	4
153	Edgeâ€Mediated Annihilation of Vacancy Clusters in Monolayer Molybdenum Diselenide (MoSe ₂) under Electron Beam Irradiation. Small, 2022, 18, e2105194.	5.2	4
154	A Novel AFM Chip for Fountain Pen Nanolithography - Design and Microfabrication. Materials Research Society Symposia Proceedings, 2003, 782, 1.	0.1	3
155	Fracture Size Effect in Ultrananocrystalline Diamond: Weibull Theory Applicability., 2004,, 341.		3
156	Nanoelectromechanical Systems â€" Experiments and Modeling. Nanoscience and Technology, 2007, , 135-196.	1.5	3
157	Modeling and Experiments in Cell and Biomolecular Mechanics. Experimental Mechanics, 2009, 49, 1-2.	1.1	3
158	Mechanical Properties of Nacre Constituents: An Inverse Method Approach. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	2
159	Optimization of a microfluidic device for localized electroporation of cells. , 2014, , .		2
160	Novel AFM Nanoprobes. Nanoscience and Technology, 2007, , 77-134.	1.5	2
161	An experimental/computational approach to identify moduli and residual stress in MEMS radio-frequency switches., 2003, 43, 309.		2
162	Nanofountain Probe Electroporation for Monoclonal Cell Line Generation. Methods in Molecular Biology, 2020, 2050, 59-68.	0.4	2

#	Article	IF	CITATIONS
163	Deep Learningâ€Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hardâ€toâ€Transfect Cells (Small 20/2022). Small, 2022, 18, .	5.2	2
164	Atomistic Mechanical Testing of Nanostructures – Seeing the Invisible and Bridging Theory and Experiments. Procedia IUTAM, 2014, 10, 447-452.	1.2	1
165	Mechanical Metamaterials: Folding at the Microscale: Enabling Multifunctional 3D Origamiâ€Architected Metamaterials (Small 35/2020). Small, 2020, 16, 2070192.	5.2	1
166	Experimental and Theoretical Studies of Fiber-Reinforced Composite Panels Subjected to Underwater Blast Loading., 2014,, 91-122.		1
167	Identification of Deformation Mechanisms in Biomaterials Through AFM and Digital Image Correlation. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 89-93.	0.3	1
168	Nano-Scale Testing of Nanowires and Carbon Nanotubes Using a Micro-Electro-Mechanical System. Computational and Experimental Methods in Structures, 2008, , 455-489.	0.2	1
169	Strength of Ultrananocrystalline Diamond Thin films – Identification of Weibull Parameters. Materials Research Society Symposia Proceedings, 2003, 778, 2101.	0.1	0
170	Rodney James Clifton. Experimental Mechanics, 2009, 49, 165-168.	1.1	0
171	Special Issue on Advances in Impact Engineering. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	1.1	0
172	Nanofountain Probes for direct-write nanomanufacturing and in vitro single cell studies. , 2010, , .		0
173	Carbon Nanotubes: Atomistic Investigation of Load Transfer Between DWNT Bundles "Crosslinked―by PMMA Oligomers (Adv. Funct. Mater. 15/2013). Advanced Functional Materials, 2013, 23, 1976-1976.	7.8	0
174	Preface. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 1-3.	1.5	0
175	Enzyme Sampling: Temporal Sampling of Enzymes from Live Cells by Localized Electroporation and Quantification of Activity by SAMDI Mass Spectrometry (Small 26/2020). Small, 2020, 16, 2070144.	5.2	0
176	In-Situ Electron Microscopy Testing of Nanostructures. , 2007, , 9-10.		0
177	Scanning Probes for the Life Sciences. , 2010, , 27-61.		O
178	Experimental Characterization of Composite Structures Subjected to Underwater Impulsive Loadings. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 239-240.	0.3	0
179	Novel Synthetic Material Mimicking Mechanisms from Natural Nacre. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 289-290.	0.3	0
180	Arrays of Robust Carbon Nanotube-Based NEMS: A Combined Experimental/Computational Investigation. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 81-82.	0.3	0

#	Article	IF	CITATIONS
181	Numerical Study of Composite Panels Subjected to Underwater Blasts. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 169-170.	0.3	O
182	Scanning Probes for the Life Sciences. , 2008, , 183-217.		0