
## Simon L Harley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3307235/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene.<br>Contributions To Mineralogy and Petrology, 1984, 86, 359-373.                                                                                            | 3.1  | 603       |
| 2  | Zircon Behaviour and the Thermal Histories of Mountain Chains. Elements, 2007, 3, 25-30.                                                                                                                                                             | 0.5  | 535       |
| 3  | Refining the <i>P–T</i> records of UHT crustal metamorphism. Journal of Metamorphic Geology, 2008, 26, 125-154.                                                                                                                                      | 3.4  | 294       |
| 4  | An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean<br>history of the Napier Complex, east Antarctica. Contributions To Mineralogy and Petrology, 2005, 149,<br>57-84.                                  | 3.1  | 291       |
| 5  | How Does the Continental Crust Get Really Hot?. Elements, 2011, 7, 235-240.                                                                                                                                                                          | 0.5  | 281       |
| 6  | Garnet–orthopyroxene barometry for granulites and peridotites. Nature, 1982, 300, 697-701.                                                                                                                                                           | 27.8 | 269       |
| 7  | On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. Geological<br>Society Special Publication, 1998, 138, 81-107.                                                                                                  | 1.3  | 257       |
| 8  | The Solubility of Alumina in Orthopyroxene Coexisting with Garnet in FeO-MgOAl2O3SiO2 and CaOFeOMgOAl2O3SiO2. Journal of Petrology, 1984, 25, 665-696.                                                                                               | 2.8  | 241       |
| 9  | Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the<br>KFMASH system. Contributions To Mineralogy and Petrology, 1995, 120, 270-291.                                                             | 3.1  | 235       |
| 10 | Accessory phase controls on the geochemistry of crustal melts and restites produced during<br>water-undersaturated partial melting. Contributions To Mineralogy and Petrology, 1993, 114, 550-566.                                                   | 3.1  | 219       |
| 11 | The Influence of Retrograde Cation Exchange on Granulite P-T Estimates and a Convergence Technique for the Recovery of Peak Metamorphic Conditions. Journal of Petrology, 1994, 35, 543-576.                                                         | 2.8  | 196       |
| 12 | Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: An experimental investigation. Geology, 2010, 38, 323-326.                                                                                                  | 4.4  | 172       |
| 13 | Extending our understanding of Ultrahigh temperature crustal metamorphism. Journal of<br>Mineralogical and Petrological Sciences, 2004, 99, 140-158.                                                                                                 | 0.9  | 167       |
| 14 | Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1120 °C UHT metamorphism in the<br>Napier Complex, Antarctica, and implications for the entropy of sapphirine. Contributions To<br>Mineralogy and Petrology, 2000, 138, 293-307. | 3.1  | 156       |
| 15 | Garnet-Orthopyroxene Bearing Granulites from Enderby Land, Antarctica: Metamorphic Pressure<br>Temperature-Time Evolution of the Archaean Napier Complex. Journal of Petrology, 1985, 26, 819-856.                                                   | 2.8  | 152       |
| 16 | The impact of zircon–garnet REE distribution data on the interpretation of zircon U–Pb ages in<br>complex high-grade terrains: An example from the Rauer Islands, East Antarctica. Chemical Geology,<br>2007, 241, 62-87.                            | 3.3  | 141       |
| 17 | Deformation-induced trace element redistribution in zircon revealed using atom probe tomography.<br>Nature Communications, 2016, 7, 10490.                                                                                                           | 12.8 | 137       |
| 18 | A matter of time: The importance of the duration of UHT metamorphism. Journal of Mineralogical and<br>Petrological Sciences, 2016, 111, 50-72.                                                                                                       | 0.9  | 132       |

| #  | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Experimental determination of <scp>REE</scp> partition coefficients between zircon, garnet and melt:<br>a key to understanding highâ€ <i>T</i> crustal processes. Journal of Metamorphic Geology, 2015, 33,<br>231-248.                                                                         | 3.4 | 128       |
| 20 | Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations<br>in Napier Complex, East Antarctica. Journal of Mineralogical and Petrological Sciences, 2004, 99,<br>180-190.                                                                             | 0.9 | 118       |
| 21 | Proterozoic Granulites from the Rauer Group, East Antarctica. I. Decompressional<br>Pressure-Temperature Paths Deduced from Mafic and Felsic Gneisses. Journal of Petrology, 1988, 29,<br>1059-1095.                                                                                            | 2.8 | 115       |
| 22 | Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the<br>duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova, 1997, 9,<br>47-51.                                                                                | 2.1 | 115       |
| 23 | Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite<br>and/or associated other high-grade rocks: Implications for Palaeoproterozoic tectonothermal<br>evolution of the Khondalite Belt, North China Craton. Precambrian Research, 2013, 237, 78-100. | 2.7 | 103       |
| 24 | WollastoniteScapolite Assemblages as Indicators of Granulite Pressure-Temperature-Fluid Histories:<br>The Rauer Group, East Antarctica. Journal of Petrology, 1992, 33, 693-728.                                                                                                                | 2.8 | 100       |
| 25 | Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chemical Geology, 2012, 322-323, 192-208.                                                                                                                                       | 3.3 | 100       |
| 26 | New Constraints from Garnetite on the P-T Path of the Khondalite Belt: Implications for the Tectonic Evolution of the North China Craton. Journal of Petrology, 2013, 54, 1725-1758.                                                                                                            | 2.8 | 96        |
| 27 | A Reappraisal of the Pressureâ€Temperature Path of Granulites from the Kerala Khondalite Belt,<br>Southern India. Journal of Geology, 2000, 108, 687-703.                                                                                                                                       | 1.4 | 89        |
| 28 | Archaean-Cambrian crustal development of East Antarctica: metamorphic characteristics and tectonic implications. Geological Society Special Publication, 2003, 206, 203-230.                                                                                                                    | 1.3 | 89        |
| 29 | Antarctica and supercontinent evolution: historical perspectives, recent advances and unresolved issues. Geological Society Special Publication, 2013, 383, 1-34.                                                                                                                               | 1.3 | 89        |
| 30 | Pb isotopic composition, colour, and microstructure of monazites from a polymetamorphic rock in Antarctica. Contributions To Mineralogy and Petrology, 1984, 85, 141-148.                                                                                                                       | 3.1 | 75        |
| 31 | The geochronology, structure and metamorphism of early Archaean rocks at Fyfe Hills, Enderby Land,<br>Antarctica. Precambrian Research, 1983, 21, 197-222.                                                                                                                                      | 2.7 | 70        |
| 32 | Geological relationships in highâ€grade gneiss of the Brattstrand Bluffs coastline, Prydz Bay, East<br>Antarctica. Australian Journal of Earth Sciences, 1991, 38, 497-519.                                                                                                                     | 1.0 | 70        |
| 33 | Precambrian geological relationships in highâ€grade gneisses of the Rauer Islands, east Antarctica.<br>Australian Journal of Earth Sciences, 1987, 34, 175-207.                                                                                                                                 | 1.0 | 69        |
| 34 | Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis. Journal of Metamorphic Geology, 2002, 20, 71-86.                                                                                                                                                    | 3.4 | 69        |
| 35 | Accessory Mineral Behaviour in Granulite Migmatites: a Case Study from the Kerala Khondalite Belt,<br>India. Journal of Petrology, 2014, 55, 1965-2002.                                                                                                                                         | 2.8 | 66        |
| 36 | A pyroxene-bearing meta-ironstone and other pyroxene-granulites from Tonagh Island, Enderby Land,<br>Antarctica: further evidence for very high temperature (> 980°C) Archaean regional metamorphism in<br>the Napier Complex. Journal of Metamorphic Geology, 1987, 5, 341-356.                | 3.4 | 65        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Anatexis during High-pressure Crustal Metamorphism: Evidence from Garnet–Whole-rock REE<br>Relationships and Zircon–Rutile Ti–Zr Thermometry in Leucogranulites from the Bohemian Massif.<br>Journal of Petrology, 2010, 51, 1967-2001.                | 2.8 | 59        |
| 38 | Geochronology and geological evolution of metamorphic rocks in the Field Islands area, East<br>Antarctica. Journal of Metamorphic Geology, 1983, 1, 277-303.                                                                                           | 3.4 | 58        |
| 39 | A sapphirine-cordierite-garnet-sillimanite granulite from Enderby Land, Antarctica: implications for<br>FMAS petrogenetic grids in the granulite facies. Contributions To Mineralogy and Petrology, 1986, 94,<br>452-460.                              | 3.1 | 55        |
| 40 | Monazite behaviour and age significance in poly-metamorphic high-grade terrains: A case study from<br>the western Musgrave Block, central Australia11Abbreviations: After Kretz, 1983 Lithos, 2006, 88,<br>100-134.                                    | 1.4 | 54        |
| 41 | A petrogenetic grid for aluminous granulite facies metapelites in the KFMASH system. Journal of Metamorphic Geology, 2001, 19, 45-59.                                                                                                                  | 3.4 | 52        |
| 42 | Preservation of evidence for prograde metamorphism in ultrahigh-temperature, high-pressure<br>kyanite-bearing granulites, South Harris, Scotland. Journal of Metamorphic Geology, 2006, 24, 263-279.                                                   | 3.4 | 51        |
| 43 | Mesoproterozoic geology of the Nampula Block, northern Mozambique: Tracing fragments of<br>Mesoproterozoic crust in the heart of Gondwana. Precambrian Research, 2010, 182, 124-148.                                                                   | 2.7 | 51        |
| 44 | Paragenetic and mineral-chemical relationships in orthoamphibole-bearing gneisses from Enderby<br>Land, east Antarctica: a record of Proterozoic uplift. Journal of Metamorphic Geology, 1985, 3, 179-200.                                             | 3.4 | 49        |
| 45 | Wollastonite at Nuliyam, Kerala, southern India: a reassessment of CO2-infiltration and charnockite formation at a classic locality. Contributions To Mineralogy and Petrology, 1995, 120, 83-94.                                                      | 3.1 | 49        |
| 46 | Chapter 8 Proterozoic Granulite Terranes. Neoproterozoic-Cambrian Tectonics, Global Change and<br>Evolution: A Focus on South Western Gondwana, 1992, 10, 301-359.                                                                                     | 0.2 | 48        |
| 47 | Boron isotopes in tourmaline from the ca. 3.7–3.8Ga Isua supracrustal belt, Greenland: Sources for<br>boron in Eoarchean continental crust and seawater. Geochimica Et Cosmochimica Acta, 2015, 163,<br>156-177.                                       | 3.9 | 48        |
| 48 | Orthopyroxene-Corundum in Mg-Al-rich Granulites from the Oygarden Islands, East Antarctica.<br>Journal of Petrology, 2004, 45, 1481-1512.                                                                                                              | 2.8 | 46        |
| 49 | Lowâ€P / highâ€Tmetamorphism in the Okiep Copper District, western Namaqualand, South Africa. Journal<br>of Metamorphic Geology, 1998, 16, 281-305.                                                                                                    | 3.4 | 42        |
| 50 | Reaction textures in scapolite–wollastonite–grossular calc-silicate rock from the Kerala Khondalite<br>Belt, Southern India: evidence for high-temperature metamorphism and initial cooling. Lithos, 1998, 44,<br>83-99.                               | 1.4 | 42        |
| 51 | New SIMS U–Pb zircon ages from the Langavat Belt, South Harris, NW Scotland: implications for the<br>Lewisian terrane model. Journal of the Geological Society, 2008, 165, 967-981.                                                                    | 2.1 | 40        |
| 52 | Lattice distortion in a zircon population and its effects on trace element mobility and U–Th–Pb<br>isotope systematics: examples from the Lewisian Gneiss Complex, northwest Scotland. Contributions<br>To Mineralogy and Petrology, 2013, 166, 21-41. | 3.1 | 40        |
| 53 | Reactions and textures in wollastonite-scapolite granulites and their significance for<br>pressure-temperature-fluid histories of high-grade terranes. Precambrian Research, 1994, 66, 309-323.                                                        | 2.7 | 39        |
| 54 | Lu–Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence<br>for the early Archean differentiation of Earth's mantle. Earth and Planetary Science Letters, 2006, 246,<br>305-316.                             | 4.4 | 38        |

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Sedimentary provenance and age of metamorphism of the Vestfold Hills, East Antarctica: Evidence for<br>a piece of Chinese Antarctica?. Precambrian Research, 2012, 196-197, 23-45.                                                                                    | 2.7 | 38        |
| 56 | Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies<br>paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: Evidence for a non-marine evaporite<br>source. Geochimica Et Cosmochimica Acta, 2013, 123, 261-283. | 3.9 | 38        |
| 57 | Comparison of the GarnetOrthopyroxene Geobarometer with Recent Experimental Studies, and Applications to Natural Assemblages. Journal of Petrology, 1984, 25, 697-712.                                                                                                | 2.8 | 37        |
| 58 | Diffusion metasomatism in silica-undersaturated sapphirine-bearing granulite from Rumdoodle Peak,<br>Framnes Mountains, east Antarctica. Contributions To Mineralogy and Petrology, 1999, 134, 264-276.                                                               | 3.1 | 35        |
| 59 | New evidence for Palaeoproterozoic high grade metamorphism in the Trivandrum Block, Southern<br>India. Precambrian Research, 2016, 280, 120-138.                                                                                                                      | 2.7 | 35        |
| 60 | The retrogradeP–T–tpath for lowâ€pressure granulites from the Reynolds Range, central Australia:<br>petrological constraints and implications for lowâ€P/highâ€Tmetamorphism. Journal of Metamorphic<br>Geology, 1998, 16, 511-529.                                   | 3.4 | 34        |
| 61 | FTIR microspectroscopy and SIMS study of water-poor cordierite from El Hoyazo, Spain: Application to mineral and melt devolatilization. Lithos, 2009, 113, 498-506.                                                                                                   | 1.4 | 32        |
| 62 | The Archaean geological evolution of Enderby Land, Antarctica. Geological Society Special Publication, 1987, 27, 285-296.                                                                                                                                             | 1.3 | 31        |
| 63 | Alumina solubility in orthopyroxene coexisting with sapphirine and quartz. Contributions To<br>Mineralogy and Petrology, 2003, 144, 473-483.                                                                                                                          | 3.1 | 31        |
| 64 | Sapphirine granulites from the Vestfold Hills, East Antarctica: geochemical and metamorphic evolution. Antarctic Science, 1993, 5, 389-402.                                                                                                                           | 0.9 | 30        |
| 65 | Late Archaean granulite facies metamorphism in the Vestfold Hills, East Antarctica. Lithos, 2007, 93, 39-67.                                                                                                                                                          | 1.4 | 27        |
| 66 | The distribution of H2O–CO2 between cordierite and granitic melt under fluid-saturated conditions<br>at 5Âkbar and 900°C. Contributions To Mineralogy and Petrology, 2001, 142, 107-118.                                                                              | 3.1 | 26        |
| 67 | Chapter 3.2 Ancient Antarctica: The Archaean of the East Antarctic Shield. Neoproterozoic-Cambrian<br>Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2007, 15, 149-186.                                                                   | 0.2 | 25        |
| 68 | Corundum inclusions in diamonds—discriminatory criteria and a corundum compositional datasetâ~†.<br>Lithos, 2004, 77, 273-286.                                                                                                                                        | 1.4 | 24        |
| 69 | Geomorphology and glacial history of Rauer Group, East Antarctica. Quaternary Research, 2009, 72,<br>80-90.                                                                                                                                                           | 1.7 | 24        |
| 70 | Zr-in-rutile resetting in aluminosilicate bearing ultra-high temperature granulites: Refining the record of cooling and hydration in the Napier Complex, Antarctica. Lithos, 2017, 272-273, 128-146.                                                                  | 1.4 | 24        |
| 71 | Testing the fidelity of thermometers at ultrahigh temperatures. Journal of Metamorphic Geology, 2019, 37, 917-934.                                                                                                                                                    | 3.4 | 24        |
| 72 | Local processes involved in the generation of migmatites within mafic granulites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1988, 79, 209-222.                                                                                  | 0.3 | 23        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Peak and post–peak development of UHT metamorphism at Mather Peninsula, Rauer Islands: Zircon and<br>monazite U–Th–Pb and REE chemistry constraints. Journal of Mineralogical and Petrological<br>Sciences, 2016, 111, 89-103. | 0.9  | 23        |
| 74 | Granulite facies metasomatism: zoned calc-silicate boudins from the Rauer Group, East Antarctica.<br>Contributions To Mineralogy and Petrology, 1993, 113, 557-571.                                                            | 3.1  | 22        |
| 75 | Ultrahigh temperature deformation microstructures in felsic granulites of the Napier Complex,<br>Antarctica. Tectonophysics, 2006, 427, 133-151.                                                                               | 2.2  | 21        |
| 76 | Temperature–time evolution of the Assynt Terrane of the Lewisian Gneiss Complex of Northwest<br>Scotland from zircon U-Pb dating and Ti thermometry. Precambrian Research, 2015, 260, 55-75.                                   | 2.7  | 21        |
| 77 | Neoproterozoic evolution and Cambrian reworking of ultrahigh temperature granulites in the<br>Eastern Ghats Province, India. Journal of Metamorphic Geology, 2019, 37, 977-1006.                                               | 3.4  | 21        |
| 78 | Pb isotopic domains from the Indian Ocean sector of Antarctica: implications for past<br>Antarctica–India connections. Geological Society Special Publication, 2013, 383, 59-72.                                               | 1.3  | 20        |
| 79 | A window into the lower crust: Trace element systematics and the occurrence of inclusions/intergrowths in granulite-facies rutile. Gondwana Research, 2018, 59, 76-86.                                                         | 6.0  | 20        |
| 80 | Titanium-bearing sapphirine in a partially melted aluminous granulite xenolith, Vestfold Hills,<br>Antarctica: geological and mineralogical implications. European Journal of Mineralogy, 1995, 7,<br>637-654.                 | 1.3  | 18        |
| 81 | Quantitative analysis of H2O and CO2 in cordierite using polarized FTIR spectroscopy. Contributions<br>To Mineralogy and Petrology, 2012, 164, 881-894.                                                                        | 3.1  | 18        |
| 82 | Sodium and potassium in cordierite a potential thermometer for melts?. European Journal of<br>Mineralogy, 2002, 14, 459-469.                                                                                                   | 1.3  | 17        |
| 83 | Mg-Al yttrian zirconolite in a partially melted sapphirine granulite, Vestfold Hills, East Antarctica.<br>Mineralogical Magazine, 1994, 58, 259-269.                                                                           | 1.4  | 16        |
| 84 | High-temperature granulites. Nature, 1990, 347, 132-133.                                                                                                                                                                       | 27.8 | 14        |
| 85 | Late Variscan (315 Ma) subduction or deceptive zircon REE patterns and U–Pb dates from<br>migmatiteâ€hosted eclogites? (Montagne Noire, France). Journal of Metamorphic Geology, 2022, 40, 39-65.                              | 3.4  | 13        |
| 86 | The influence of cordierite on melting and mineral-melt equilibria in ultra-high-temperature<br>metamorphism. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,<br>2004, 95, 87-98.              | 0.3  | 10        |
| 87 | Ancient Antarctica. , 2019, , 865-897.                                                                                                                                                                                         |      | 6         |
| 88 | Timing and mechanisms of carbon isotope exchange in granulite-facies calc-silicate boudins, Rauer<br>Group, East Antarctica. American Mineralogist, 1997, 82, 392-404.                                                         | 1.9  | 5         |
| 89 | Geological repositories: scientific priorities and potential high-technology transfer from the space and physics sectors. Mineralogical Magazine, 2015, 79, 1651-1664.                                                         | 1.4  | 3         |
| 90 | Reducing mantle redox options. Nature, 1990, 348, 394-394.                                                                                                                                                                     | 27.8 | 2         |

| #  | Article                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Upwardly mobile hot crust. Nature, 1995, 375, 451-452.                                                                                         | 27.8 | 2         |
| 92 | Neoarchean magmatism in the southern Scott and Raggatt Mountains, Napier Complex, east<br>Antarctica. Precambrian Research, 2022, 370, 106530. | 2.7  | 2         |
| 93 | The influence of cordierite on melting and mineral-melt equilibria in ultra-high-temperature metamorphism. , 2004, , .                         |      | 1         |
| 94 | Metamorphism in orogeny. , 0, , 193-258.                                                                                                       |      | 0         |