Daolin Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3307085/publications.pdf

Version: 2024-02-01

2101 1139 60,293 281 100 230 citations h-index g-index papers 285 285 285 54187 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017, 171, 273-285.	28.9	4,081
3	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
4	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
5	Ferroptosis: process and function. Cell Death and Differentiation, 2016, 23, 369-379.	11.2	2,270
6	The Beclin 1 network regulates autophagy and apoptosis. Cell Death and Differentiation, 2011, 18, 571-580.	11.2	1,972
7	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10	Tf 50 502 To 1,430
8	Ferroptosis: molecular mechanisms and health implications. Cell Research, 2021, 31, 107-125.	12.0	1,406
9	The molecular machinery of regulated cell death. Cell Research, 2019, 29, 347-364.	12.0	1,373
10	Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 2016, 12, 1425-1428.	9.1	1,318
11	Activation of the p62â€Keap1â€NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63, 173-184.	7.3	1,263
12	Broadening horizons: the role of ferroptosis in cancer. Nature Reviews Clinical Oncology, 2021, 18, 280-296.	27.6	1,216
13	<scp>PAMP</scp> s and <scp>DAMP</scp> s: signal 0s that spur autophagy and immunity. Immunological Reviews, 2012, 249, 158-175.	6.0	899
14	Endogenous HMGB1 regulates autophagy. Journal of Cell Biology, 2010, 190, 881-892.	5.2	819
15	Ferroptosis: machinery and regulation. Autophagy, 2021, 17, 2054-2081.	9.1	765
16	HMGB1 in health and disease. Molecular Aspects of Medicine, 2014, 40, 1-116.	6.4	763
17	Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochemical and Biophysical Research Communications, 2016, 478, 1338-1343.	2.1	650
18	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death., 2020, 8, e000337.		610

#	Article	IF	CITATIONS
19	The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Reports, 2017, 20, 1692-1704.	6.4	608
20	Ferroptosis is a type of autophagy-dependent cell death. Seminars in Cancer Biology, 2020, 66, 89-100.	9.6	552
21	RAGE (Receptor for Advanced Glycation Endproducts), RAGE Ligands, and their role in Cancer and Inflammation. Journal of Translational Medicine, 2009, 7, 17.	4.4	491
22	AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc– Activity. Current Biology, 2018, 28, 2388-2399.e5.	3.9	471
23	Metallothioneinâ€1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 2016, 64, 488-500.	7.3	462
24	HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene, 2015, 34, 5617-5625.	5.9	459
25	High-mobility group box 1 and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 131-140.	1.9	442
26	HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene, 2010, 29, 5299-5310.	5.9	421
27	High-Mobility Group Box 1 , Oxidative Stress, and Disease. Antioxidants and Redox Signaling, 2011 , 14 , 1315 - 1335 .	5.4	420
28	Iron Metabolism in Ferroptosis. Frontiers in Cell and Developmental Biology, 2020, 8, 590226.	3.7	408
29	HMGB1 in Cancer: Good, Bad, or Both?. Clinical Cancer Research, 2013, 19, 4046-4057.	7.0	399
30	Autophagy-Dependent Ferroptosis: Machinery and Regulation. Cell Chemical Biology, 2020, 27, 420-435.	5.2	399
31	Lipid Peroxidation Drives Gasdermin D-Mediated Pyroptosis in Lethal Polymicrobial Sepsis. Cell Host and Microbe, 2018, 24, 97-108.e4.	11.0	390
32	The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biology and Medicine, 2019, 133, 162-168.	2.9	384
33	The Endotoxin Delivery Protein HMGB1 Mediates Caspase-11-Dependent Lethality in Sepsis. Immunity, 2018, 49, 740-753.e7.	14.3	377
34	PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nature Communications, 2016, 7, 13280.	12.8	356
35	HSPA5 Regulates Ferroptotic Cell Death in Cancer Cells. Cancer Research, 2017, 77, 2064-2077.	0.9	353
36	The release and activity of HMGB1 in ferroptosis. Biochemical and Biophysical Research Communications, 2019, 510, 278-283.	2.1	350

#	Article	IF	CITATIONS
37	PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nature Communications, 2014, 5, 4436.	12.8	346
38	Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Research, 2022, 32, 417-418.	12.0	346
39	The hallmarks of COVID-19 disease. PLoS Pathogens, 2020, 16, e1008536.	4.7	342
40	CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochemical and Biophysical Research Communications, 2016, 478, 838-844.	2.1	341
41	Release and activity of histone in diseases. Cell Death and Disease, 2014, 5, e1370-e1370.	6.3	324
42	Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy, 2020, 16, 2069-2083.	9.1	319
43	The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Molecular and Cellular Oncology, 2015, 2, e1054549.	0.7	301
44	Ferroptosis. Current Biology, 2020, 30, R1292-R1297.	3.9	300
45	Ferroptosis in infection, inflammation, and immunity. Journal of Experimental Medicine, 2021, 218, .	8.5	298
46	Clockophagy is a novel selective autophagy process favoring ferroptosis. Science Advances, 2019, 5, eaaw2238.	10.3	286
47	Cellular degradation systems in ferroptosis. Cell Death and Differentiation, 2021, 28, 1135-1148.	11.2	283
48	The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death and Differentiation, 2010, 17, 666-676.	11.2	281
49	Lipid storage and lipophagy regulates ferroptosis. Biochemical and Biophysical Research Communications, 2019, 508, 997-1003.	2.1	281
50	High-Mobility Group Box 1 Is Essential for Mitochondrial Quality Control. Cell Metabolism, 2011, 13, 701-711.	16.2	266
51	Oxidative Damage and Antioxidant Defense in Ferroptosis. Frontiers in Cell and Developmental Biology, 2020, 8, 586578.	3.7	265
52	Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy, 2015, 11, 28-45.	9.1	264
53	Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. Journal of Leukocyte Biology, 2007, 81, 741-747.	3.3	257
54	HMGB1 Promotes Drug Resistance in Osteosarcoma. Cancer Research, 2012, 72, 230-238.	0.9	245

#	Article	IF	CITATIONS
55	Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy, 2021, 17, 948-960.	9.1	228
56	The mechanism of HMGB1 secretion and release. Experimental and Molecular Medicine, 2022, 54, 91-102.	7.7	225
57	p53/HMGB1 Complexes Regulate Autophagy and Apoptosis. Cancer Research, 2012, 72, 1996-2005.	0.9	220
58	HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia, 2011, 25, 23-31.	7.2	218
59	Oxidative stress-mediated HMGB1 biology. Frontiers in Physiology, 2015, 6, 93.	2.8	210
60	Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nature Communications, 2020, 11, 6339.	12.8	201
61	Intracellular Hmgb1 Inhibits Inflammatory Nucleosome Release and Limits Acute Pancreatitis in Mice. Gastroenterology, 2014, 146, 1097-1107.e8.	1.3	200
62	Characteristics and Biomarkers of Ferroptosis. Frontiers in Cell and Developmental Biology, 2021, 9, 637162.	3.7	199
63	Apoptosis to autophagy switch triggered by the MHC class III-encoded receptor for advanced glycation endproducts (RAGE). Autophagy, 2011, 7, 91-93.	9.1	192
64	The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene, 2014, 33, 567-577.	5.9	192
65	Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. Journal of Hepatology, 2015, 63, 114-121.	3.7	189
66	Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia, 2012, 26, 1752-1760.	7.2	184
67	HMGB1: A novel Beclin 1-binding protein active in autophagy. Autophagy, 2010, 6, 1209-1211.	9.1	183
68	Signaling pathways and defense mechanisms of ferroptosis. FEBS Journal, 2022, 289, 7038-7050.	4.7	177
69	PINK1 and PARK2 Suppress Pancreatic Tumorigenesis through Control of Mitochondrial Iron-Mediated Immunometabolism. Developmental Cell, 2018, 46, 441-455.e8.	7.0	176
70	Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochemical and Biophysical Research Communications, 2016, 473, 775-780.	2.1	174
71	Ferroptosis is a lysosomal cell death process. Biochemical and Biophysical Research Communications, 2018, 503, 1550-1556.	2.1	172
72	Cell death in pancreatic cancer: from pathogenesis to therapy. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 804-823.	17.8	156

#	Article	IF	CITATIONS
73	Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends in Endocrinology and Metabolism, 2021, 32, 444-462.	7.1	148
74	ESCRT-Ill–dependent membrane repair blocks ferroptosis. Biochemical and Biophysical Research Communications, 2020, 522, 415-421.	2.1	143
75	Transcription factors in ferroptotic cell death. Cancer Gene Therapy, 2020, 27, 645-656.	4.6	141
76	The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7031-7036.	7.1	139
77	Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARα oncoprotein. Autophagy, 2011, 7, 401-411.	9.1	138
78	Eat-Me: Autophagy, Phagocytosis, and Reactive Oxygen Species Signaling. Antioxidants and Redox Signaling, 2013, 18, 677-691.	5.4	138
79	AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochemical and Biophysical Research Communications, 2020, 523, 966-971.	2.1	138
80	Organelle-specific regulation of ferroptosis. Cell Death and Differentiation, 2021, 28, 2843-2856.	11.2	138
81	Inhibition of Aurora Kinase A Induces Necroptosis inÂPancreaticÂCarcinoma. Gastroenterology, 2017, 153, 1429-1443.e5.	1.3	137
82	FANCD2 protects against bone marrow injury from ferroptosis. Biochemical and Biophysical Research Communications, 2016, 480, 443-449.	2.1	136
83	The BET family in immunity and disease. Signal Transduction and Targeted Therapy, 2021, 6, 23.	17.1	135
84	The Anti-inflammatory Effects of Heat Shock Protein 72 Involve Inhibition of High-Mobility-Group Box 1 Release and Proinflammatory Function in Macrophages. Journal of Immunology, 2007, 179, 1236-1244.	0.8	134
85	Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Therapy, 2021, 28, 55-63.	4.6	134
86	The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Therapy, 2015, 22, 326-334.	4.6	133
87	Autophagy and Ferroptosis—What Is the Connection?. Current Pathobiology Reports, 2017, 5, 153-159.	3.4	133
88	A Randomized Phase II Preoperative Study of Autophagy Inhibition with High-Dose Hydroxychloroquine and Gemcitabine/Nab-Paclitaxel in Pancreatic Cancer Patients. Clinical Cancer Research, 2020, 26, 3126-3134.	7.0	133
89	Autophagy inhibition in combination cancer treatment. Current Opinion in Investigational Drugs, 2009, 10, 1269-79.	2.3	127
90	NUPR1 is a critical repressor of ferroptosis. Nature Communications, 2021, 12, 647.	12.8	126

#	Article	IF	CITATIONS
91	BECN1 is a new driver of ferroptosis. Autophagy, 2018, 14, 2173-2175.	9.1	123
92	The long non-coding RNA TP73-AS1 modulates HCC cell proliferation through miR-200a-dependent HMGB1/RAGE regulation. Journal of Experimental and Clinical Cancer Research, 2017, 36, 51.	8.6	122
93	The Circadian Clock Controls Immune Checkpoint Pathway in Sepsis. Cell Reports, 2018, 24, 366-378.	6.4	120
94	Cell Death and DAMPs in Acute Pancreatitis. Molecular Medicine, 2014, 20, 466-477.	4.4	119
95	TMEM173 Drives Lethal Coagulation in Sepsis. Cell Host and Microbe, 2020, 27, 556-570.e6.	11.0	119
96	High Mobility Group Box 1 (HMGB1) Activates an Autophagic Response to Oxidative Stress. Antioxidants and Redox Signaling, 2011 , 15 , $2185-2195$.	5.4	118
97	DAMPs and autophagy. Autophagy, 2013, 9, 451-458.	9.1	118
98	HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon, 2020, 6, e05672.	3.2	118
99	DAMPs, ageing, and cancer: The †DAMP Hypothesis'. Ageing Research Reviews, 2015, 24, 3-16.	10.9	117
100	Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy, 2021, 17, 3361-3374.	9.1	116
101	Interplay Between Lipid Metabolism and Autophagy. Frontiers in Cell and Developmental Biology, 2020, 8, 431.	3.7	115
102	<i>MIR34A</i> regulates autophagy and apoptosis by targeting <i>HMGB1</i> in the retinoblastoma cell. Autophagy, 2014, 10, 442-452.	9.1	114
103	PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Reports, 2021, 34, 108767.	6.4	112
104	Quercetin Prevents LPS-Induced High-Mobility Group Box 1 Release and Proinflammatory Function. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 651-660.	2.9	106
105	JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice. Gastroenterology, 2018, 154, 1480-1493.	1.3	105
106	The STING1 network regulates autophagy and cell death. Signal Transduction and Targeted Therapy, 2021, 6, 208.	17.1	105
107	Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer. Cell Research, 2017, 27, 916-932.	12.0	103
108	Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy, 2011, 7, 1256-1258.	9.1	102

#	Article	IF	Citations
109	The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy, 2010, 6, 1181-1183.	9.1	101
110	5-Fluorouracil upregulates cell surface B7-H1 (PD-L1) expression in gastrointestinal cancers. , 2016, 4, 65.		100
111	Emerging Role of High-Mobility Group Box 1 (HMGB1) in Liver Diseases. Molecular Medicine, $2013, 19, 357-366$.	4.4	98
112	MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chemical Biology, 2021, 28, 765-775.e5.	5.2	98
113	Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma. Autophagy, 2012, 8, 275-277.	9.1	96
114	Tumor immunity times out: TIM-3 and HMGB1. Nature Immunology, 2012, 13, 808-810.	14.5	96
115	Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy, 2019, 15, 2033-2035.	9.1	96
116	THE INHIBITION OF LPS-INDUCED PRODUCTION OF INFLAMMATORY CYTOKINES BY HSP70 INVOLVES INACTIVATION OF THE NF-κB PATHWAY BUT NOT THE MAPK PATHWAYS. Shock, 2006, 26, 277-284.	2.1	91
117	A Janus Tale of Two Active High Mobility Group Box 1 (HMGB1) Redox States. Molecular Medicine, 2012, 18, 1360-1362.	4.4	91
118	ALK is a therapeutic target for lethal sepsis. Science Translational Medicine, 2017, 9, .	12.4	90
119	Growth arrest and apoptosis induction in androgen receptor-positive human breast cancer cells by inhibition of USP14-mediated androgen receptor deubiquitination. Oncogene, 2018, 37, 1896-1910.	5.9	90
120	Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochemical Pharmacology, 2013, 86, 410-418.	4.4	89
121	cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. Science Advances, 2019, 5, eaav5562.	10.3	89
122	Regulation and function of autophagy in pancreatic cancer. Autophagy, 2021, 17, 3275-3296.	9.1	89
123	High mobility group protein B1 controls liver cancer initiation through yesâ€associated protein â€dependent aerobic glycolysis. Hepatology, 2018, 67, 1823-1841.	7.3	88
124	ACOD1 in immunometabolism and disease. Cellular and Molecular Immunology, 2020, 17, 822-833.	10.5	88
125	Nuclear Heat Shock Protein 72 as a Negative Regulator of Oxidative Stress (Hydrogen) Tj ETQq1 1 0.784314 rgBT 7376-7384.	/Overlock 0.8	10 Tf 50 10 86
126	PKR-Dependent Inflammatory Signals. Science Signaling, 2012, 5, pe47.	3.6	86

#	Article	IF	CITATIONS
127	NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochemical and Biophysical Research Communications, 2020, 531, 581-587.	2.1	86
128	AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy, 2012, 8, 989-991.	9.1	82
129	The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines. Molecular and Cellular Biochemistry, 2014, 390, 271-280.	3.1	81
130	High-Mobility Group Box 1 Promotes Hepatocellular Carcinoma Progression through miR-21–Mediated Matrix Metalloproteinase Activity. Cancer Research, 2015, 75, 1645-1656.	0.9	80
131	A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis*. Critical Care Medicine, 2008, 36, 291-295.	0.9	79
132	HMGB1 as an autophagy sensor in oxidative stress. Autophagy, 2011, 7, 904-906.	9.1	79
133	HMGB1-dependent and -independent autophagy. Autophagy, 2014, 10, 1873-1876.	9.1	79
134	A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy, 2016, 12, 2374-2385.	9.1	78
135	Targeting ferroptosis in pancreatic cancer: a double-edged sword. Trends in Cancer, 2021, 7, 891-901.	7.4	78
136	DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth. Oncolmmunology, 2019, 8, e1605822.	4.6	77
137	The Receptor for Advanced Glycation End-Products (RAGE) Protects Pancreatic Tumor Cells Against Oxidative Injury. Antioxidants and Redox Signaling, 2011, 15, 2175-2184.	5.4	76
138	DAMP-mediated autophagy contributes to drug resistance. Autophagy, 2011, 7, 112-114.	9.1	74
139	RAGE regulates autophagy and apoptosis following oxidative injury. Autophagy, 2011, 7, 442-444.	9.1	71
140	microRNA <i>30A</i> promotes autophagy in response to cancer therapy. Autophagy, 2012, 8, 853-855.	9.1	70
141	The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human \hat{l}^2 -thalassemia in Mice. Scientific Reports, 2016, 6, 32463.	3.3	70
142	The Versatile Gasdermin Family: Their Function and Roles in Diseases. Frontiers in Immunology, 2021, 12, 751533.	4.8	70
143	The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Therapy, 2022, 29, 875-878.	4.6	69
144	S100A8 Contributes to Drug Resistance by Promoting Autophagy in Leukemia Cells. PLoS ONE, 2014, 9, e97242.	2.5	68

#	Article	IF	Citations
145	USP10 modulates the SKP2/Bcr-Abl axis via stabilizing SKP2 in chronic myeloid leukemia. Cell Discovery, 2019, 5, 24.	6.7	65
146	Lipid Metabolism in Ferroptosis. Advanced Biology, 2021, 5, e2100396.	2.5	65
147	Up-regulated autophagy by endogenous high mobility group box-1 promotes chemoresistance in leukemia cells. Leukemia and Lymphoma, 2012, 53, 315-322.	1.3	64
148	HMGB1–DNA complex-induced autophagy limits AlM2 inflammasome activation through RAGE. Biochemical and Biophysical Research Communications, 2014, 450, 851-856.	2.1	61
149	Broad Spectrum Deubiquitinase Inhibition Induces Both Apoptosis and Ferroptosis in Cancer Cells. Frontiers in Oncology, 2020, 10, 949.	2.8	60
150	ESCRT-III-mediated membrane repair in cell death and tumor resistance. Cancer Gene Therapy, 2021, 28, 1-4.	4.6	60
151	Antiferroptotic activity of non-oxidative dopamine. Biochemical and Biophysical Research Communications, 2016, 480, 602-607.	2.1	59
152	Cathepsin B is a mediator of organelle-specific initiation of ferroptosis. Biochemical and Biophysical Research Communications, 2020, 533, 1464-1469.	2.1	59
153	CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut, 2021, 70, 890-899.	12.1	59
154	Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy. Autophagy, 2015, 11, 214-224.	9.1	56
155	UV irradiation resistanceâ€associated gene suppresses apoptosis by interfering with BAX activation. EMBO Reports, 2011, 12, 727-734.	4.5	55
156	Ferroptosis becomes immunogenic: implications for anticancer treatments. Oncolmmunology, 2021, 10, 1862949.	4.6	55
157	Apoptosis promotes early tumorigenesis. Oncogene, 2011, 30, 1851-1854.	5.9	54
158	Inhibiting autophagy potentiates the anticancer activity of IFN1@/IFNÎ \pm in chronic myeloid leukemia cells. Autophagy, 2013, 9, 317-327.	9.1	54
159	STING1 Promotes Ferroptosis Through MFN1/2-Dependent Mitochondrial Fusion. Frontiers in Cell and Developmental Biology, 2021, 9, 698679.	3.7	54
160	Mitochondrial quality control mediated by PINK1 and PRKN: links to iron metabolism and tumor immunity. Autophagy, 2019, 15, 172-173.	9.1	53
161	Circular RNA 101368/miR-200a axis modulates the migration of hepatocellular carcinoma through HMGB1/RAGE signaling. Cell Cycle, 2018, 17, 2349-2359.	2.6	52
162	HMGB1 regulates autophagy through increasing transcriptional activities of JNK and ERK in human myeloid leukemia cells. BMB Reports, 2011, 44, 601-606.	2.4	52

#	Article	IF	CITATIONS
163	Emerging mechanisms of immunocoagulation in sepsis and septic shock. Trends in Immunology, 2021, 42, 508-522.	6.8	51
164	DCN released from ferroptotic cells ignites AGER-dependent immune responses. Autophagy, 2022, 18, 2036-2049.	9.1	51
165	The Receptor for Advanced Glycation End Products Activates the AIM2 Inflammasome in Acute Pancreatitis. Journal of Immunology, 2016, 196, 4331-4337.	0.8	50
166	Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy. Theranostics, 2020, 10, 3366-3381.	10.0	50
167	Life after death: targeting high mobility group box 1 in emergent cancer therapies. American Journal of Cancer Research, 2013, 3, 1-20.	1.4	50
168	The Receptor for Advanced Glycation End Products Promotes Pancreatic Carcinogenesis and Accumulation of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2013, 190, 1372-1379.	0.8	47
169	Alkaliptosis: a new weapon for cancer therapy. Cancer Gene Therapy, 2020, 27, 267-269.	4.6	46
170	Extracellular SQSTM1 mediates bacterial septic death in mice through insulin receptor signalling. Nature Microbiology, 2020, 5, 1576-1587.	13.3	45
171	The circadian clock protects against ferroptosis-induced sterile inflammation. Biochemical and Biophysical Research Communications, 2020, 525, 620-625.	2.1	44
172	Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy, 2023, 19, 54-74.	9.1	44
173	Ménage à Trois in stress: DAMPs, redox and autophagy. Seminars in Cancer Biology, 2013, 23, 380-390.	9.6	43
174	A novel lncRNA, TCONS_00006195, represses hepatocellular carcinoma progression by inhibiting enzymatic activity of ENO1. Cell Death and Disease, 2018, 9, 1184.	6.3	43
175	PPARG-mediated ferroptosis in dendritic cells limits antitumor immunity. Biochemical and Biophysical Research Communications, 2021, 576, 33-39.	2.1	43
176	Peroxisome: the new player in ferroptosis. Signal Transduction and Targeted Therapy, 2020, 5, 273.	17.1	41
177	Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Molecular Cancer, 2021, 20, 128.	19.2	41
178	The role of ferroptosis in lung cancer. Biomarker Research, 2021, 9, 82.	6.8	41
179	HEAT SHOCK RESPONSE INHIBITS RELEASE OF HIGH MOBILITY GROUP BOX 1 PROTEIN INDUCED BY ENDOTOXIN IN MURINE MACROPHAGES. Shock, 2005, 23, 434-440.	2.1	40
180	Metal-based proteasomal deubiquitinase inhibitors as potential anticancer agents. Cancer and Metastasis Reviews, 2017, 36, 655-668.	5.9	40

#	Article	IF	Citations
181	The ferroptosis inducer erastin promotes proliferation and differentiation in human peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications, 2018, 503, 1689-1695.	2.1	40
182	Mitophagy Receptors in Tumor Biology. Frontiers in Cell and Developmental Biology, 2020, 8, 594203.	3.7	40
183	AUF1 protects against ferroptosis to alleviate sepsis-induced acute lung injury by regulating NRF2 and ATF3. Cellular and Molecular Life Sciences, 2022, 79, 228.	5.4	39
184	Inflammasome-Dependent Coagulation Activation in Sepsis. Frontiers in Immunology, 2021, 12, 641750.	4.8	38
185	Autophagy in pancreatic cancer pathogenesis and treatment. American Journal of Cancer Research, 2012, 2, 383-96.	1.4	38
186	High Mobility Group Box 1 (HMGB1) Phenotypic Role Revealed with Stress. Molecular Medicine, 2014, 20, 359-362.	4.4	37
187	Damage Associated Molecular Pattern Molecule-Induced microRNAs (DAMPmiRs) in Human Peripheral Blood Mononuclear Cells. PLoS ONE, 2012, 7, e38899.	2.5	35
188	Autophagy is required for IL-2-mediated fibroblast growth. Experimental Cell Research, 2013, 319, 556-565.	2.6	34
189	Plumbagin Protects Mice from Lethal Sepsis by Modulating Immunometabolism Upstream of PKM2. Molecular Medicine, 2016, 22, 162-172.	4.4	34
190	Pirin is a nuclear redox-sensitive modulator of autophagy-dependent ferroptosis. Biochemical and Biophysical Research Communications, 2021, 536, 100-106.	2.1	34
191	Direct molecular interactions between HMGB1 and TP53 in colorectal cancer. Autophagy, 2012, 8, 846-848.	9.1	33
192	AMPK regulates immunometabolism in sepsis. Brain, Behavior, and Immunity, 2018, 72, 89-100.	4.1	33
193	NUPR1 inhibitor ZZW-115 induces ferroptosis in a mitochondria-dependent manner. Cell Death Discovery, 2021, 7, 269.	4.7	33
194	A critical role for UVRAG in apoptosis. Autophagy, 2011, 7, 1242-1244.	9.1	32
195	Trypsin-Mediated Sensitization to Ferroptosis Increases the Severity of Pancreatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 483-500.	4.5	32
196	Crosstalk between hepatitis B virus X and highâ€mobility group box 1 facilitates autophagy in hepatocytes. Molecular Oncology, 2018, 12, 322-338.	4.6	31
197	Damage-Associated Molecular Patterns and the Systemic Immune Consequences of Severe Thermal Injury. Journal of Immunology, 2020, 205, 1189-1197.	0.8	31
198	Induction of KLF4 in response to heat stress. Cell Stress and Chaperones, 2006, 11, 379.	2.9	30

#	Article	IF	CITATIONS
199	TFAM is a novel mediator of immunogenic cancer cell death. Oncolmmunology, 2018, 7, e1431086.	4.6	29
200	Extracellular DNA promotes colorectal tumor cell survival after cytotoxic chemotherapy. Journal of Surgical Research, 2018, 226, 181-191.	1.6	29
201	Long non-coding RNA SNHG5 regulates chemotherapy resistance through the miR-32/DNAJB9 axis in acute myeloid leukemia. Biomedicine and Pharmacotherapy, 2020, 123, 109802.	5.6	29
202	Notch signaling protects CD4 T cells from STING-mediated apoptosis during acute systemic inflammation. Science Advances, 2020, 6, .	10.3	29
203	Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Communications, 2021, 41, 642-660.	9.2	29
204	Induction of autophagy-dependent ferroptosis to eliminate drug-tolerant human retinoblastoma cells. Cell Death and Disease, 2022, 13 , .	6.3	29
205	Sweating the Small Stuff. Pancreas, 2013, 42, 740-759.	1.1	28
206	USP1-dependent RPS16 protein stability drives growth and metastasis of human hepatocellular carcinoma cells. Journal of Experimental and Clinical Cancer Research, 2021, 40, 201.	8.6	27
207	The Chemokine Receptors CXCR4/CXCR7 and Their Primary Heterodimeric Ligands CXCL12 and CXCL12/High Mobility Group Box 1 in Pancreatic Cancer Growth and Development. Pancreas, 2015, 44, 528-534.	1.1	26
208	AGER-Mediated Lipid Peroxidation Drives Caspase-11 Inflammasome Activation in Sepsis. Frontiers in Immunology, 2019, 10, 1904.	4.8	26
209	The HBx–CTTN interaction promotes cell proliferation and migration of hepatocellular carcinoma via CREB1. Cell Death and Disease, 2019, 10, 405.	6.3	26
210	The dark side of ferroptosis in pancreatic cancer. Oncolmmunology, 2021, 10, 1868691.	4.6	26
211	The V-ATPases in cancer and cell death. Cancer Gene Therapy, 2022, 29, 1529-1541.	4.6	26
212	Parkin facilitates proteasome inhibitor-induced apoptosis via suppression of NF-κB activity in hepatocellular carcinoma. Cell Death and Disease, 2019, 10, 719.	6.3	25
213	Extracellular SQSTM1 as an inflammatory mediator. Autophagy, 2020, 16, 2313-2315.	9.1	25
214	Strategic plan for management of COVID-19 in paediatric haematology and oncology departments. Lancet Haematology,the, 2020, 7, e359-e362.	4.6	25
215	Nuclear DAMP complex-mediated RAGE-dependent macrophage cellÂdeath. Biochemical and Biophysical Research Communications, 2015, 458, 650-655.	2.1	24
216	Targeting Ubiquitin–Proteasome System With Copper Complexes for Cancer Therapy. Frontiers in Molecular Biosciences, 2021, 8, 649151.	3.5	24

#	Article	IF	Citations
217	SMG9 drives ferroptosis by directly inhibiting GPX4 degradation. Biochemical and Biophysical Research Communications, 2021, 567, 92-98.	2.1	24
218	Functional analysis of a novel KRAB/C2H2 zinc finger protein Mipu1. Biochemical and Biophysical Research Communications, 2007, 356, 829-835.	2.1	23
219	DUSP1 Blocks autophagy-dependent ferroptosis in pancreatic cancer. Journal of Pancreatology, 2020, 3, 154-160.	0.9	23
220	Hsp27: A novel therapeutic target for pediatric M4/M5 acute myeloid leukemia. Oncology Reports, 2013, 29, 1459-1466.	2.6	21
221	Ferroptosis by Lipid Peroxidation: The Tip of the Iceberg?. Frontiers in Cell and Developmental Biology, 2021, 9, 646890.	3.7	19
222	Extracellular HMGB1 prevents necroptosis in acute myeloid leukemia cells. Biomedicine and Pharmacotherapy, 2019, 112, 108714.	5.6	18
223	The Multifaceted Effects of Autophagy on the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1225, 99-114.	1.6	18
224	A new role of GRP75-USP1-SIX1 protein complex in driving prostate cancer progression and castration resistance. Oncogene, 2021, 40, 4291-4306.	5.9	18
225	Ion Channels and Transporters in Autophagy. Autophagy, 2022, 18, 4-23.	9.1	17
226	The dual role of HMGB1 in pancreatic cancer. Journal of Pancreatology, 2018, 1, 19-24.	0.9	16
227	Mitochondrial ACOD1/IRG1 in infection and sterile inflammation. Journal of Intensive Medicine, 2022, 2, 78-88.	2.1	16
228	Chloroquine in fighting COVID-19: good, bad, or both?. Autophagy, 2020, 16, 2273-2275.	9.1	15
229	Correlation of Long Noncoding RNA SEMA6A-AS1 Expression with Clinical Outcome in HBV-Related Hepatocellular Carcinoma. Clinical Therapeutics, 2020, 42, 439-447.	2.5	15
230	Targeting NF-κB–dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells. Biochemical and Biophysical Research Communications, 2021, 562, 55-61.	2.1	15
231	Not just nuclear proteins: 'novel' autophagy cancer treatment targets - p53 and HMGB1. Current Opinion in Investigational Drugs, 2008, 9, 1259-63.	2.3	14
232	Cyclophosphamide-induced GPX4 degradation triggers parthanatos by activating AIFM1. Biochemical and Biophysical Research Communications, 2022, 606, 68-74.	2.1	14
233	The cGAS-STING pathway connects mitochondrial damage to inflammation in burn-induced acute lung injury in rat. Burns, 2022, 48, 168-175.	1.9	13
234	Novel chemokine-like activities of histones in tumor metastasis. Oncotarget, 2016, 7, 61728-61740.	1.8	13

#	Article	IF	CITATIONS
235	The HMGB1-AGER-STING1 pathway mediates the sterile inflammatory response to alkaliptosis. Biochemical and Biophysical Research Communications, 2021, 560, 165-171.	2.1	12
236	Itaconic acid induces ferroptosis by activating ferritinophagy. Biochemical and Biophysical Research Communications, 2021, 583, 56-62.	2.1	12
237	HMGB1 is a therapeutic target for leukemia. American Journal of Blood Research, 2012, 2, 36-43.	0.6	12
238	The Art of War: Ferroptosis and Pancreatic Cancer. Frontiers in Pharmacology, 2021, 12, 773909.	3.5	12
239	HSP90 Mediates IFN \hat{I}^3 -Induced Adaptive Resistance to Anti-PD-1 Immunotherapy. Cancer Research, 2022, 82, 2003-2018.	0.9	12
240	The STING1-MYD88 complex drives ACOD1/IRG1 expression and function in lethal innate immunity. IScience, 2022, 25, 104561.	4.1	12
241	Monitoring autophagy-dependent ferroptosis. Methods in Cell Biology, 2021, 165, 163-176.	1.1	10
242	Mitophagy in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 616079.	2.8	10
243	Post-transcriptional regulation of <i>ATG1</i> is a critical node that modulates autophagy during distinct nutrient stresses. Autophagy, 2022, 18, 1694-1714.	9.1	8
244	Heterodimeric RGD-NGR PET Tracer for the Early Detection of Pancreatic Cancer. Molecular Imaging and Biology, 2022, 24, 580-589.	2.6	8
245	RAGE-specific single chain Fv for PET imaging of pancreatic cancer. PLoS ONE, 2018, 13, e0192821.	2.5	7
246	Effect of 5-fluorouracil on membranous PD-L1 expression in colon cancer cells Journal of Clinical Oncology, 2016, 34, 592-592.	1.6	7
247	Hepatocyte-specific <i>Hmgb1</i> Deletion. Autophagy, 2015, 11, 1189-1191.	9.1	6
248	The STING-STAT6 pathway drives Cas9-induced host response in human monocytes. Biochemical and Biophysical Research Communications, 2018, 506, 278-283.	2.1	6
249	Metabolic checkpoint of ferroptosis resistance. Molecular and Cellular Oncology, 2021, 8, 1901558.	0.7	6
250	Pharmacological Modulation of BET Family in Sepsis. Frontiers in Pharmacology, 2021, 12, 642294.	3.5	6
251	The dual role of ferroptosis in pancreatic cancer: a narrative review. Journal of Pancreatology, 2021, 4, 76-81.	0.9	6
252	Serpinc1 Acts as a Tumor Suppressor in Hepatocellular Carcinoma Through Inducing Apoptosis and Blocking Macrophage Polarization in an Ubiquitin-Proteasome Manner. Frontiers in Oncology, 2021, 11, 738607.	2.8	6

#	Article	IF	CITATIONS
253	Targeting HSP90 sensitizes pancreas carcinoma to PD-1 blockade. Oncolmmunology, 2022, 11, 2068488.	4.6	6
254	Heat Shock Proteins: Endogenous Modulators of Ferroptosis. , 2019, , 61-81.		5
255	What Is the Pathobiology of Inflammation to Cell Death? Apoptosis, Necrosis, Necroptosis, Autophagic Cell Death, Pyroptosis, and NETosis., 2016, , 81-106.		4
256	Assessment of Posttranslational Modifications of ATG proteins. Methods in Enzymology, 2017, 587, 171-188.	1.0	4
257	Pathological Significance and Prognostic Roles of Indirect Bilirubin/Albumin Ratio in Hepatic Encephalopathy. Frontiers in Medicine, 2021, 8, 706407.	2.6	4
258	Regulation and Function of Autophagy During Ferroptosis., 2019,, 43-59.		4
259	STING1 in Different Organelles: Location Dictates Function. Frontiers in Immunology, 2022, 13, 842489.	4.8	4
260	HMGB1 in Cell Death., 0,,.		3
261	Role of the Beclin 1 Network in the Cross-Regulation Between Autophagy and Apoptosis. , 2016, , 75-88.		3
262	Duloxetine-Induced Neural Cell Death and Promoted Neurite Outgrowth in N2a Cells. Neurotoxicity Research, 2020, 38, 859-870.	2.7	3
263	Ferroptosis, free radicals, and cancer., 2021, , 149-158.		3
264	The Dual Role of HMGB1 in Pancreatic Cancer. Journal of Pancreatology, 2018, 1, 19-24.	0.9	3
265	Upstream open reading frames mediate autophagy-related protein translation. Autophagy, 2023, 19, 457-473.	9.1	3
266	Autophagy Regulation by HMGB1 in Disease. , 2016, , 173-185.		2
267	Bilirubin Restrains the Anticancer Effect of Vemurafenib on BRAF-Mutant Melanoma Cells Through ERK-MNK1 Signaling. Frontiers in Oncology, 2021, 11, 698888.	2.8	2
268	HSP90 as an emerging barrier to immune checkpoint blockade therapy. Oncoscience, 2022, 9, 20-22.	2.2	2
269	High-Mobility Group Box 1 and Autophagy. , O, , .		1
270	The Flavone Baicalein and Its Use in Gastrointestinal Disease. , 2019, , 145-155.		1

#	Article	IF	CITATIONS
271	CDK1/2/5 blockade: killing two birds with one stone. Oncolmmunology, 2021, 10, 1875612.	4.6	1
272	Cell death., 2022,, 47-64.		1
273	OR.92. The Damage Associated Molecular Pattern Molecule [DAMP] High Mobility Group Box Protein-1 [HMGB1] is an Activator of Autophagy Driving Immunity. Clinical Immunology, 2008, 127, S37.	3.2	O
274	Su.70. The Receptor for Advanced Glycation End Products (RAGE) is Associated with the Tumor Cell Response to Stress. Clinical Immunology, 2008, 127, S147.	3.2	0
275	Autophagy and the Tumor Microenvironment. , 2013, , 167-189.		0
276	Nuclear DAMPs in Hepatic Injury and Inflammation. , 2017, , 133-158.		0
277	Response to comment on "ALK is a therapeutic target for lethal sepsis― Science Translational Medicine, 2018, 10, .	12.4	0
278	Abstract 4674: Receptor for advanced glycation endproducts (RAGE) regulates $\tilde{\text{AY}}\text{-catenin}$ function and chemosensitivity in pancreatic cancer cells. , 2010, , .		0
279	Abstract 4854: Inhibition of high-mobility group box 1 protein (HMGB1) release sensitizes cancer cells to chemotherapy. , $2010, , .$		0
280	Endogenous HMGB1 regulates autophagy. Journal of Experimental Medicine, 2010, 207, i27-i27.	8.5	0
281	Abstract 2031: HMGB1 regulates pancreatic cancer initiation and pogression. , 2014, , .		o