
Heikki Kuusanmäki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306792/publications.pdf Version: 2024-02-01

HEIKKI KIILISANMÃØI

#	Article	IF	CITATIONS
1	Somatic <i>STAT3</i> Mutations in Large Granular Lymphocytic Leukemia. New England Journal of Medicine, 2012, 366, 1905-1913.	27.0	681
2	Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood, 2013, 121, 4541-4550.	1.4	252
3	Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood, 2015, 125, 639-648.	1.4	229
4	Aggressive natural killer-cell leukemiaÂmutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nature Communications, 2018, 9, 1567.	12.8	107
5	Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica, 2020, 105, 708-720.	3.5	99
6	Implementing a Functional Precision Medicine Tumor Board for Acute Myeloid Leukemia. Cancer Discovery, 2022, 12, 388-401.	9.4	73
7	Identification of precision treatment strategies for relapsed/refractory multiple myeloma by functional drug sensitivity testing. Oncotarget, 2017, 8, 56338-56350.	1.8	35
8	Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Science Advances, 2021, 7, .	10.3	28
9	Drug sensitivity profiling identifies potential therapies for lymphoproliferative disorders with overactive JAK/STAT3 signaling. Oncotarget, 2017, 8, 97516-97527.	1.8	28
10	Somatic <i>MED12</i> Nonsense Mutation Escapes mRNA Decay and Reveals a Motif Required for Nuclear Entry. Human Mutation, 2017, 38, 269-274.	2.5	20
11	Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors. Oncotarget, 2017, 8, 22606-22615.	1.8	13
12	Identification of novel regulators of STAT3 activity. PLoS ONE, 2020, 15, e0230819.	2.5	12
13	Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia. Npj Precision Oncology, 2021, 5, 71.	5.4	12
14	Endogenous and combination retinoids are active in myelomonocytic leukemias. Haematologica, 2021, 106, 1008-1021.	3.5	11
15	Selective drug combination vulnerabilities in STAT3- and TP53-mutant malignant NK cells. Blood Advances, 2021, 5, 1862-1875.	5.2	5
16	Novel Activating STAT5B Mutations As Drivers Of T-ALL. Blood, 2013, 122, 3863-3863.	1.4	5
17	Integration of Ex Vivo Drug Testing and in-Depth Molecular Profiling Reveals Oncogenic Signaling Pathways and Novel Therapeutic Strategies for Multiple Myeloma. Blood, 2014, 124, 2046-2046.	1.4	3
18	Identification of Novel Therapeutic Strategies for NUP98-NSD1-Positive AML By Drug Sensitivity Profiling. Blood, 2014, 124, 2160-2160.	1.4	0

Ηεικκι KuusanmÃ

#	Article	IF	CITATIONS
19	Identification of Dual PI3K/mTOR and BCL2 Inhibitors for the Treatment of High Risk Multiple Myeloma. Blood, 2014, 124, 646-646.	1.4	0
20	Drug Sensitivity Profiling Identifies Drugs for Targeting Constitutively Active Mutant STAT3 and Mutant STAT5B Positive Malignancies. Blood, 2014, 124, 1771-1771.	1.4	0
21	Stratification of Multiple Myeloma Patients Based on Ex Vivo Drug Sensitivity and Identification of New Treatments for Patients with High-Risk Relapsed/Refractory Disease. Blood, 2015, 126, 3006-3006.	1.4	0
22	Exome Sequencing of Aggressive Natural Killer Cell Leukemia and Drug Profiling Highlight Candidate Driver Pathways in Malignant Natural Killer Cells. Blood, 2015, 126, 700-700.	1.4	0
23	Mutational Landscape of Aggressive Natural Killer Cell Leukemia and Drug Sensitivity Profiling Reveal Therapeutic Options in Natural Killer Cell Malignancies. Blood, 2016, 128, 2921-2921.	1.4	0
24	In Silico and Ex Vivo Drug Screening Identifies Dasatinib as a Potential Targeted Therapy for T-ALL. Blood, 2016, 128, 4029-4029.	1.4	0
25	Identification of Optimized Compound Combinations for the Treatment of NUP98-NSD1+ AML. Blood, 2016, 128, 4711-4711.	1.4	0
26	Identification of novel regulators of STAT3 activity. , 2020, 15, e0230819.		0
27	Identification of novel regulators of STAT3 activity. , 2020, 15, e0230819.		0
28	Identification of novel regulators of STAT3 activity. , 2020, 15, e0230819.		0
29	Identification of novel regulators of STAT3 activity. , 2020, 15, e0230819.		0