
Yoichi Aso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Physical Review D, 2022, 105, .	4.7	31
2	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	4.7	27
3	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	4.5	15
4	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
5	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13
6	Improving the stability of frequency-dependent squeezing with bichromatic control of filter cavity length, alignment, and incident beam pointing. Physical Review D, 2022, 105, .	4.7	2
7	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	4.7	18
8	Research and Development for Third-Generation Gravitational Wave Detectors. , 2022, , 301-360.		0
9	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	4.5	33
10	Overview of KAGRA: Detector design and construction history. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	198
11	Overview of KAGRA: KAGRA science. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	31
12	Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	66
13	Optical loss study of the cryogenic molecular layer using a folded cavity for future gravitational-wave detectors. Optics Express, 2021, 29, 6780.	3.4	1
14	Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. Classical and Quantum Gravity, 2021, 38, 065011.	4.0	7
15	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	8.3	32
16	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
17	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	4.7	192
18	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	4.7	62

#	Article	IF	CITATIONS
19	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	4.7	42
20	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	4.5	39
21	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	19
22	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	33
23	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
24	Application of independent component analysis to the iKAGRA data. Progress of Theoretical and Experimental Physics, 2020, 2020, .	6.6	7
25	Optical loss study of molecular layer for a cryogenic interferometric gravitational-wave detector. Physical Review D, 2020, 102, .	4.7	7
26	The status of KAGRA underground cryogenic gravitational wave telescope. Journal of Physics: Conference Series, 2020, 1342, 012014.	0.4	12
27	An arm length stabilization system for KAGRA and future gravitational-wave detectors. Classical and Quantum Gravity, 2020, 37, 035004.	4.0	10
28	Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. Physical Review Letters, 2020, 124, 171101.	7.8	63
29	Compact integrated optical sensors and electromagnetic actuators for vibration isolation systems in the gravitational-wave detector KAGRA. Review of Scientific Instruments, 2020, 91, 115001.	1.3	5
30	Space gravitational-wave antennas DECIGO and B-DECIGO. International Journal of Modern Physics D, 2019, 28, 1845001.	2.1	73
31	First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Classical and Quantum Gravity, 2019, 36, 165008.	4.0	45
32	Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA. Classical and Quantum Gravity, 2019, 36, 095015.	4.0	9
33	Demonstration of Displacement Sensing of a mg-Scale Pendulum for mm- and mg-Scale Gravity Measurements. Physical Review Letters, 2019, 122, 071101.	7.8	43
34	KAGRA: 2.5 generation interferometric gravitational wave detector. Nature Astronomy, 2019, 3, 35-40.	10.1	331
35	Measuring scattering light distributions on high-absorptive surfaces for stray-light reduction in gravitational-wave detectors. Optics Express, 2019, 27, 16890.	3.4	8
36	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808

#	Article	IF	CITATIONS
37	Construction of KAGRA: an underground gravitational-wave observatory. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	73
38	Measurement of optical losses in a high-finesse 300Âm filter cavity for broadband quantum noise reduction in gravitational-wave detectors. Physical Review D, 2018, 98, .	4.7	13
39	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
40	Mirror actuation design for the interferometer control of the KAGRA gravitational wave telescope. Classical and Quantum Gravity, 2017, 34, 225001.	4.0	14
41	The status of DECIGO. Journal of Physics: Conference Series, 2017, 840, 012010.	0.4	148
42	Ground-based low-frequency gravitational-wave detector with multiple outputs. Physical Review D, 2017, 95, .	4.7	15
43	Calculation method for light scattering caused by multilayer coated mirrors in gravitational wave detectors. Optics Express, 2017, 25, 4741.	3.4	12
44	Higher order test of Lorentz invariance with an optical ring cavity. , 2017, , .		0
45	Direct measurement of optical-trap-induced decoherence. Physical Review A, 2016, 94, .	2.5	5
46	Estimation of losses in a 300Âm filter cavity and quantum noise reduction in the KAGRA gravitational-wave detector. Physical Review D, 2016, 93, .	4.7	24
47	Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA. Review of Scientific Instruments, 2016, 87, 034501.	1.3	10
48	Active damping performance of the KAGRA seismic attenuation system prototype. Journal of Physics: Conference Series, 2016, 716, 012022.	0.4	3
49	5-mg suspended mirror driven by measurement-induced backaction. Physical Review A, 2015, 92, .	2.5	24
50	Optically trapped mirror for reaching the standard quantum limit. Optics Express, 2014, 22, 12915.	3.4	14
51	Search for a stochastic gravitational-wave background using a pair of torsion-bar antennas. Physical Review D, 2014, 89, .	4.7	23
52	Method to reduce excess noise of a detuned cavity for application in KAGRA. Classical and Quantum Gravity, 2014, 31, 095003.	4.0	2
53	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
54	TESTING LORENTZ INVARIANCE WITH A DOUBLE-PASS OPTICAL RING CAVITY. , 2014, , 216-219.		0

#	Article	IF	CITATIONS
55	New Limit on Lorentz Violation Using a Double-Pass Optical Ring Cavity. Physical Review Letters, 2013, 110, 200401.	7.8	20
56	Optical cavity limits on higher order Lorentz violation. Physical Review D, 2013, 88, .	4.7	8
57	Interferometer design of the KAGRA gravitational wave detector. Physical Review D, 2013, 88, .	4.7	722
58	Length sensing and control strategies for the LCGT interferometer. Classical and Quantum Gravity, 2012, 29, 124008.	4.0	6
59	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	3
60	Prospects for frequency comparison of Sr and Hg optical lattice clocks toward 10 ^{−18} uncertainties. , 2012, , .		0
61	Search for a Stochastic Gravitational-wave Background with Torsion-bar Antennas. Journal of Physics: Conference Series, 2012, 363, 012017.	0.4	1
62	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	4.7	2
63	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	4.7	0
64	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	2
65	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	4.7	54
66	Opportunity to test non-Newtonian gravity using interferometric sensors with dynamic gravity field generators. Physical Review D, 2011, 84, .	4.7	7
67	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	4.7	85
68	Upper Limit on Gravitational Wave Backgrounds at 0.2 Hz with a Torsion-Bar Antenna. Physical Review Letters, 2011, 106, 161101.	7.8	36
69	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	4.7	0
70	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
71	The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28, 094011.	4.0	456
72	Optical Configuration and Control of Ultra-sensitive Gravitational Wave Detectors. Journal of the Vacuum Society of Japan, 2011, 54, 597-603.	0.3	0

#	Article	IF	CITATIONS
73	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
74	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
75	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	1.6	120
76	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
77	DECIGO and DECIGO pathfinder. Classical and Quantum Gravity, 2010, 27, 084010.	4.0	39
78	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	4.7	111
79	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	4.7	107
80	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
81	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
82	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
83	JOINT SEARCHES BETWEEN GRAVITATIONAL-WAVE INTERFEROMETERS AND HIGH-ENERGY NEUTRINO TELESCOPES: SCIENCE REACH AND ANALYSIS STRATEGIES. International Journal of Modern Physics D, 2009, 18, 1655-1659.	2.1	23
84	DECIGO pathfinder. Classical and Quantum Gravity, 2009, 26, 094019.	4.0	18
85	Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors. Classical and Quantum Gravity, 2009, 26, 055010.	4.0	5
86	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
87	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
88	The Seismic Attenuation System (SAS) for the Advanced LIGO gravitational wave interferometric detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 598, 737-753.	1.6	34
89	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	4.7	83
90	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	4.7	79

#	Article	IF	CITATIONS
91	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	20.1	971
92	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	4.7	78
93	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	4.7	45
94	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	105
95	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	4.7	120
96	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	4.7	38
97	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	32
98	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45
99	DECIGO: The Japanese space gravitational wave antenna. Journal of Physics: Conference Series, 2009, 154, 012040.	0.4	30
100	Search method for coincident events from LIGO and IceCube detectors. Classical and Quantum Gravity, 2008, 25, 114039.	4.0	33
101	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
102	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
103	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
104	Recent results of a seismically isolated optical table prototype designed for advanced LIGO. Journal of Physics: Conference Series, 2008, 122, 012010.	0.4	7
105	The Japanese space gravitational wave antenna; DECIGO. Journal of Physics: Conference Series, 2008, 120, 032004.	0.4	34
106	DECIGO pathfinder. Journal of Physics: Conference Series, 2008, 120, 032005.	0.4	5
107	Three Successive and Interacting Shock Waves Generated by a Solar Flare. Astrophysical Journal, 2008, 684, L45-L49.	4.5	23
108	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160

Yoıcнı Aso

#	Article	IF	CITATIONS
109	The Japanese space gravitational wave antenna - DECIGO. Journal of Physics: Conference Series, 2008, 122, 012006.	0.4	46
110	DECIGO: THE JAPANESE SPACE GRAVITATIONAL WAVE ANTENNA. , 2008, , .		0
111	Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000–2004. Physical Review D, 2006, 74, .	4.7	11
112	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. Physical Review D, 2006, 73, .	4.7	40
113	Active vibration isolation using a Suspension Point Interferometer. Journal of Physics: Conference Series, 2006, 32, 451-456.	0.4	2
114	The Japanese space gravitational wave antenna—DECIGO. Classical and Quantum Gravity, 2006, 23, S125-S131.	4.0	388
115	Study of quality factor and hysteresis associated with the state-of-the-art passive seismic isolation system for Gravitational Wave Interferometric Detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 538. 526-537.	1.6	14
116	Upper limits on gravitational-wave bursts radiated from stellar-core collapses in our galaxy. Classical and Quantum Gravity, 2005, 22, S1283-S1291.	4.0	8
117	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	4.7	49
118	Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses. Physical Review D, 2005, 71, .	4.7	24
119	Analysis for burst gravitational waves with TAMA300 data. Classical and Quantum Gravity, 2004, 21, S735-S740.	4.0	4
120	Analysis methods for burst gravitational waves with TAMA data. Classical and Quantum Gravity, 2004, 21, S1679-S1684.	4.0	6
121	Present status of large-scale cryogenic gravitational wave telescope. Classical and Quantum Gravity, 2004, 21, S1161-S1172.	4.0	43
122	Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data. Physical Review D, 2004, 70, .	4.7	16
123	Stabilization of a Fabry–Perot interferometer using aÂsuspension-point interferometer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 327, 1-8.	2.1	22
124	Methods to characterize non-Gaussian noise in TAMA. Classical and Quantum Gravity, 2003, 20, S697-S709.	4.0	8
125	Current status of large-scale cryogenic gravitational wave telescope. Classical and Quantum Gravity, 2003, 20, S871-S884.	4.0	21
126	Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy. Physical Review Letters, 2001, 86, 3950-3954.	7.8	255