Christopher Lambert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3305288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antiproliferative and Cytotoxic Cytochalasins from Sparticola triseptata Inhibit Actin Polymerization and Aggregation. Journal of Fungi (Basel, Switzerland), 2022, 8, 560.	3.5	5
2	Studies on the secondary metabolism of Rosellinia and Dematophora strains (Xylariaceae) from Iran. Mycological Progress, 2022, 21, .	1.4	5
3	High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. Fungal Diversity, 2021, 106, 7-28.	12.3	65
4	Resolution of the Hypoxylon fuscum Complex (Hypoxylaceae, Xylariales) and Discovery and Biological Characterization of Two of Its Prominent Secondary Metabolites. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Ov	erl act a 10 ⁻	Tf 50 617 Td (
5	Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites. Microorganisms, 2020, 8, 1397.	3.6	9
6	Diversely Functionalised Cytochalasins through Mutasynthesis and Semiâ€ S ynthesis. Chemistry - A European Journal, 2020, 26, 13578-13583.	3.3	13
7	Elucidation of the life cycle of the endophytic genus Muscodor and its transfer to Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach. Fungal Diversity, 2020, 101, 177-210.	12.3	32
8	Intragenomic polymorphisms in the ITS region of high-quality genomes of the Hypoxylaceae (Xylariales,) Tj ETQq	0 0 0 rgBT	Overlock 10
9	New Peptaibiotics and a Cyclodepsipeptide from Ijuhya vitellina: Isolation, Identification, Cytotoxic and Nematicidal Activities. Antibiotics, 2020, 9, 132.	3.7	12
10	Discovery of a new species of the Hypoxylon rubiginosum complex from Iran and antagonistic activities of Hypoxylon spp. against the Ash Dieback pathogen, Hymenoscyphus fraxineus, in dual culture. MycoKeys, 2020, 66, 105-133.	1.9	17
11	Observations on Texas hypoxylons, including two new <i>Hypoxylon</i> species and widespread environmental isolates of the <i>H. croceum</i> complex identified by a polyphasic approach. Mycologia, 2019, 111, 832-856.	1.9	18
12	Hypomontagnella (Hypoxylaceae): a new genus segregated from Hypoxylon by a polyphasic taxonomic approach. Mycological Progress, 2019, 18, 187-201.	1.4	38
13	Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycological Progress, 2018, 17, 115-154.	1.4	144
14	Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Diversity, 2017, 85, 1-43.	12.3	65
15	New species and reports of Hypoxylon from Argentina recognized by a polyphasic approach. Mycological Progress, 2016, 15, 1.	1.4	29
16	Lenormandins A—G, new azaphilones from Hypoxylon lenormandii and Hypoxylon jaklitschii sp. nov., recognised by chemotaxonomic data. Fungal Diversity, 2015, 71, 165-184.	12.3	46