David Liebl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3305262/publications.pdf

Version: 2024-02-01

430874 677142 1,164 23 18 22 h-index citations g-index papers 23 23 23 3953 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Mythical origins of the actin cytoskeleton. Current Opinion in Cell Biology, 2021, 68, 55-63.	5.4	27
2	Physicochemical, textural and structural characteristics of wheat gluten-soy protein composited meat analogues prepared with the mechanical elongation method. Food Structure, 2021, 28, 100183.	4.5	51
3	Diversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain. Cell Reports, 2021, 37, 109775.	6.4	40
4	Desmosome dualism – most of the junction is stable, but a plakophilin moiety is persistently dynamic. Journal of Cell Science, 2021, 134, .	2.0	13
5	Phase Transitions by an Abundant Protein in the Anammox Extracellular Matrix Mediate Cell-to-Cell Aggregation and Biofilm Formation. MBio, 2020, $11,\ldots$	4.1	8
6	Heterochromatin loss as a determinant of progerinâ€induced DNA damage in Hutchinson–Gilford Progeria. Aging Cell, 2020, 19, e13108.	6.7	31
7	Baseplate Component TssK and Spatio-Temporal Assembly of T6SS in Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 1615.	3.5	10
8	Structural and Functional Characterization of the Type Three Secretion System (T3SS) Needle of Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 573.	3.5	37
9	SopB-Mediated Recruitment of SNX18 Facilitates Salmonella Typhimurium Internalization by the Host Cell. Frontiers in Cellular and Infection Microbiology, 2017, 7, 257.	3.9	26
10	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	8.5	108
11	<scp>Pscl</scp> is a type <scp>III</scp> secretion needle anchoring protein with <i>in vitro</i> polymerization capacities. Molecular Microbiology, 2015, 96, 419-436.	2.5	14
12	Live Cell Imaging Reveals Novel Functions of Salmonella enterica SPI2-T3SS Effector Proteins in Remodeling of the Host Cell Endosomal System. PLoS ONE, 2014, 9, e115423.	2.5	33
13	Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments. PLoS Pathogens, 2014, 10, e1004374.	4.7	64
14	Macropinosome quantitation assay. MethodsX, 2014, 1, 36-41.	1.6	45
15	The Globally Disseminated M1T1 Clone of Group A Streptococcus Evades Autophagy for Intracellular Replication. Cell Host and Microbe, 2013, 14, 675-682.	11.0	134
16	Visualization of Intracellular Hydrogen Peroxide with HyPer, a Genetically Encoded Fluorescent Probe. Methods in Enzymology, 2013, 526, 45-59.	1.0	40
17	Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. Journal of Cell Science, 2010, 123, 2502-2511.	2.0	70
18	Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages. Journal of Cell Science, 2009, 122, 2935-2945.	2.0	77

DAVID LIEBL

#	Article	IF	CITATION
19	Dynamic Remodeling of the Endosomal System During Formation of <i>Salmonella</i> Pilaments by Intracellular <i>Salmonella enterica</i> Pilaments by Intracellular <i>Pilaments by Intracell</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.7	87
20	Light and electron microscopy of phagosomes. , 2008, , 227-227.		0
21	Mouse Polyomavirus Enters Early Endosomes, Requires Their Acidic pH for Productive Infection, and Meets Transferrin Cargo in Rab11-Positive Endosomes. Journal of Virology, 2006, 80, 4610-4622.	3.4	68
22	Analysis of mouse polyomavirus mutants with lesions in the minor capsid proteins. Journal of General Virology, 2002, 83, 2309-2319.	2.9	30
23	Caveolae Are Involved in the Trafficking of Mouse Polyomavirus Virions and Artificial VP1 Pseudocapsids toward Cell Nuclei. Journal of Virology, 2001, 75, 10880-10891.	3.4	151