
Stefan Witte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3305104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Visualization of Laser-Driven Electron Multiple Scattering and Tunneling Distance in Strong-Field Ionization. Physical Review Letters, 2012, 109, 073004.	7.8	172
2	A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification. Optics Express, 2006, 14, 8168.	3.4	154
3	Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5970-5975.	7.1	150
4	Deep-Ultraviolet Quantum Interference Metrology with Ultrashort Laser Pulses. Science, 2005, 307, 400-403.	12.6	142
5	Ultrafast Optical Parametric Chirped-Pulse Amplification. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 296-307.	2.9	121
6	Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification. Optics Express, 2005, 13, 4903.	3.4	109
7	Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths. Light: Science and Applications, 2014, 3, e163-e163.	16.6	89
8	High-power parametric amplification of 118-fs laser pulses with carrier-envelope phase control. Optics Letters, 2005, 30, 78.	3.3	77
9	Frequency metrology on theEFΣg+1â†XΣg+1(0,0)transition inH2, HD, andD2. Physical Review A, 2006, 74, .	2.5	51
10	Frequency comb laser spectroscopy in the vacuum-ultraviolet region. Physical Review A, 2006, 73, .	2.5	50
11	Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction. Optics Letters, 2014, 39, 193.	3.3	49
12	Efficient Generation of Extreme Ultraviolet Light From <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Nd</mml:mi> :YAG-Driven Microdroplet-Tin Plasma. Physical Review Applied, 2019, 12, .</mml:math 	3.8	45
13	Control and precise measurement of carrier-envelope phase dynamics. Applied Physics B: Lasers and Optics, 2004, 78, 5-12.	2.2	44
14	High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses. Physical Review Letters, 2013, 111, 023007.	7.8	41
15	High harmonics with spatially varying ellipticity. Optica, 2018, 5, 479.	9.3	38
16	Spatially resolved Fourier transform spectroscopy in the extreme ultraviolet. Optica, 2016, 3, 1122.	9.3	37
17	Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system. Applied Physics B: Lasers and Optics, 2007, 87, 677-684.	2.2	36
18	High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system. Optics Letters, 2013, 38, 3021.	3.3	36

#	Article	IF	CITATIONS
19	High-speed multi-wavelength Fresnel diffraction imaging. Optics Express, 2014, 22, 30504.	3.4	36
20	Phase stability of terawatt-class ultrabroadband parametric amplification. Optics Letters, 2007, 32, 2363.	3.3	33
21	Spatial and spectral coherent control with frequency combs. Nature Photonics, 2013, 7, 38-42.	31.4	33
22	Laser-induced periodic surface structures: Arbitrary angles of incidence and polarization states. Physical Review B, 2020, 101, .	3.2	33
23	Short-coherence off-axis holographic phase microscopy of live cell dynamics. Biomedical Optics Express, 2012, 3, 2184.	2.9	32
24	High-energy Nd:YAG laser system with arbitrary sub-nanosecond pulse shaping capability. Optics Letters, 2017, 42, 2758.	3.3	32
25	Tailoring spatial entropy in extreme ultraviolet focused beams for multispectral ptychography. Optica, 2021, 8, 130.	9.3	32
26	Extreme ultraviolet light from a tin plasma driven by a 2-Âμm-wavelength laser. Optics Express, 2021, 29, 4475.	3.4	32
27	Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets. Physical Review Applied, 2018, 10, .	3.8	30
28	zPIE: an autofocusing algorithm for ptychography. Optics Letters, 2020, 45, 2030.	3.3	29
29	Advances in laboratory-scale ptychography using high harmonic sources [Invited]. Optics Express, 2022, 30, 4133.	3.4	29
30	Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources. Optics Express, 2018, 26, 6860.	3.4	25
31	Radiation transport and scaling of optical depth in Nd:YAG laser-produced microdroplet-tin plasma. Applied Physics Letters, 2019, 115, 124101.	3.3	25
32	Measuring laser beam quality, wavefronts, and lens aberrations using ptychography. Optics Express, 2020, 28, 5022.	3.4	25
33	Frequency metrology on theMg3s2S1→3s4pP1line for comparison with quasar data. Physical Review A, 2006, 74, .	2.5	24
34	Ultrafast double-pulse parametric amplification for precision Ramsey metrology. Optics Express, 2008, 16, 7071.	3.4	24
35	Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control. Optics Express, 2009, 17, 11335.	3.4	23
36	Generation and characterization of focused helical x-ray beams. Science Advances, 2020, 6, eaax8836.	10.3	21

#	Article	IF	CITATIONS
37	Sn ion energy distributions of ns- and ps-laser produced plasmas. Plasma Sources Science and Technology, 2018, 27, 045001.	3.1	20
38	Unraveling Phononic, Optoacoustic, and Mechanical Properties of Metals with Light-Driven Hypersound. Physical Review Applied, 2020, 13, .	3.8	20
39	Third-harmonic generation of a continuous-wave Ti:Sapphire laser in external resonant cavities. Applied Physics Letters, 2003, 82, 4423-4425.	3.3	18
40	Detection of periodic structures through opaque metal layers by optical measurements of ultrafast electron dynamics. Optics Express, 2018, 26, 23380.	3.4	16
41	Diffraction-based overlay metrology using angular-multiplexed acquisition of dark-field digital holograms. Optics Express, 2020, 28, 37419.	3.4	16
42	Microdroplet-tin plasma sources of EUV radiation driven by solid-state-lasers (Topical Review). Journal of Optics (United Kingdom), 2022, 24, 054014.	2.2	16
43	Hyperfine structure and isotope shift of transitions in Yb I using UV and deep-UV cw laser light and the angular distribution of fluorescence radiation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 2693-2701.	1.5	15
44	Detection of Hidden Gratings through Multilayer Nanostructures Using Light and Sound. Physical Review Applied, 2020, 14, .	3.8	15
45	Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair. Journal of Applied Physics, 2018, 124, .	2.5	13
46	Fourier transform holography with extended references using a coherent ultra-broadband light source. Optics Express, 2014, 22, 25397.	3.4	12
47	Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging. Optics Express, 2018, 26, 12479.	3.4	12
48	Laser-induced vaporization of a stretching sheet of liquid tin. Journal of Applied Physics, 2021, 129, .	2.5	11
49	Ptychographic optical coherence tomography. Optics Letters, 2021, 46, 1337.	3.3	11
50	High-resolution LIF measurements on hyperfine structure and isotope shifts in various states of Lu I using the second and third harmonic of a cw Ti:sapphire laser. European Physical Journal D, 2002, 20, 159-164.	1.3	10
51	Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target. Journal of Applied Physics, 2017, 121, 103301.	2.5	10
52	Cylindrically and non-cylindrically symmetric expansion dynamics of tin microdroplets after ultrashort laser pulse impact. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	9
53	Optical parametric chirped pulse amplifier producing ultrashort 105 mJ pulses at 155 μm. Optics Express, 2019, 27, 29829.	3.4	9
54	Aberration calibration and correction with nano-scatterers in digital holographic microscopy for semiconductor metrology. Optics Express, 2021, 29, 38237.	3.4	9

#	Article	IF	CITATIONS
55	aPIE: an angle calibration algorithm for reflection ptychography. Optics Letters, 2022, 47, 1949.	3.3	9
56	Hyperfine structure and isotope shift measurements on 4d10 1S0 → 4d9 5p J=1 transitions in Pd I using deep-UV cw laser spectroscopy. European Physical Journal D, 2002, 19, 25-29.	1.3	8
57	Photoacoustic detection of low duty cycle gratings through optically opaque layers. Applied Physics Letters, 2020, 117, .	3.3	8
58	High-resolution microscopy through optically opaque media using ultrafast photoacoustics. Optics Express, 2020, 28, 33937.	3.4	8
59	Ultrafast laser-induced guided elastic waves in a freestanding aluminum membrane. Physical Review B, 2021, 103, .	3.2	6
60	Role of scattering by surface roughness in the photoacoustic detection of hidden micro-structures. Applied Optics, 2020, 59, 9499.	1.8	6
61	Broadband extreme ultraviolet dispersion measurements using a high-harmonic source. Optics Letters, 2019, 44, 3625.	3.3	6
62	The transition from short- to long-timescale pre-pulses: Laser-pulse impact on tin microdroplets. Journal of Applied Physics, 2022, 131, .	2.5	6
63	Spatial coherence control and analysis via micromirror-based mixed-state ptychography. New Journal of Physics, 2021, 23, 053016.	2.9	5
64	Diffraction-based overlay metrology from visible to infrared wavelengths using a single sensor. Journal of Micro-nanopatterning, Materials, and Metrology, 2022, 21, .	0.8	5
65	ptyLab: a cross-platform inverse modeling toolbox for conventional and Fourier ptychography. , 2021, , .		4
66	Impact of coherence length on the field of view in dark-field holographic microscopy for semiconductor metrology: theoretical and experimental comparisons. Applied Optics, 2020, 59, 3498.	1.8	4
67	Pupil apodization in digital holographic microscopy for reduction of coherent imaging effects. , 2022, 1, 1202.		4
68	Spall-Velocity Reduction in Double-Pulse Impact on Tin Microdroplets. Physical Review Applied, 2021, 16, .	3.8	3
69	Interference probe ptychography for computational amplitude and phase microscopy. Optics Express, 2018, 26, 31372.	3.4	3
70	Laser-induced ultrasonics for detection of low-amplitude grating through metal layers with finite roughness. Optics Express, 2020, 28, 23374.	3.4	3
71	Phase retrieval algorithms for lensless imaging using diffractive shearing interferometry. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 914.	1.5	3
72	Extreme ultraviolet lensless imaging without object support through rotational diversity in diffractive shearing interferometry. Optics Express, 2020, 28, 5257.	3.4	3

#	Article	IF	CITATIONS
73	Enhancing the detection of laser-excited strain waves via transparent nanolayers. Physical Review B, 2021, 104, .	3.2	3
74	Computational-imaging-based optical coherence tomography in time- and frequency-domain. OSA Continuum, 2019, 2, 3141.	1.8	2
75	Characterization of Thin Metal Films by Ultrafast Laser Induced Ultrasound. , 2019, , .		1
76	Broadband extreme ultraviolet interferometry and imaging. EPJ Web of Conferences, 2019, 205, 02004.	0.3	1
77	Demonstration of quantum interference metrology with amplified ultrashort laser pulses. , 0, , .		0
78	Generation of terawatt sub-10 fs laser pulses using optical parametric chirped pulse amplification. , 2006, , .		0
79	Demonstration of frequency comb laser spectroscopy in the vacuum-ultraviolet. , 2006, , .		0
80	Combining coherent imaging and nonlinear microscopy for early-stage cancer detection. , 2009, , .		0
81	Doppler-Free Two-Photon Direct Frequency Comb Spectroscopy With Coherent Control. , 2012, , .		0
82	Lensless Phase Contrast Microscopy of Live Cells Using Fresnel Diffraction at Multiple Wavelengths. , 2014, , .		0
83	Ion Energy and Charge State Distribution in Pico- and Femtosecond Laser-Produced Plasmas. , 2019, , .		0
84	A Spectrally Resolved Single-Shot Wavefront Sensor for Broadband High-Harmonic Generation Sources. , 2019, , .		0
85	Tailoring spatial entropy in extreme ultraviolet focused beams for multispectral ptychography. , 2021, , .		0
86	Towards High-Order Harmonic Generation in Laser Produced Plasmas. , 2021, , .		0
87	Fast and robust diffraction based overlay metrology using dark-field digital holographic microscopy. , 2021, , .		0
88	Demonstration of Frequency Comb Laser Spectroscopy in the Vacuum-Ultraviolet. , 2006, , .		0
89	Arbitrary Temporal Shaping of Nanosecond Pulses at the Joule Level. , 2016, , .		0

#	Article	IF	CITATIONS
91	Comparison of propagation-based and ptychographic phase retrieval. , 2019, , .		0
92	An Extreme Ultraviolet Spin Grating for Spatially Resolved, Hyperspectral Magnetic Dichroism Spectroscopies. , 2019, , .		0
93	Towards High Harmonic Generation in Laser-Produced Plasma. , 2020, , .		0
94	Ptychography-based characterization of wavelength-tunable vortex beams. , 2021, , .		0
95	Optical Parametric Chirped Pulse Amplifier Producing Ultrashort 10.5 mJ Pulses at 1.55 ŵm. , 2020, , .		0
96	Ptychographic optical coherence tomography. , 2021, , .		0
97	aPIE: Angle calibration algorithm for reflection ptychography. , 2021, , .		0
98	Tailoring Spatial Entropy in Extreme Ultraviolet Focused Beams for Multispectral Ptychography. , 2021, , .		0