Jiawei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/330497/publications.pdf Version: 2024-02-01

LIAMEL WANC

#	Article	IF	CITATIONS
1	Investigation of the role of feedstock properties and process conditions on the slow pyrolysis of biomass in a continuous auger reactor. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105378.	5.5	18
2	Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in Sargassum horneri by Near-Infrared Spectroscopy and Characteristic Variables Selection Methods. Molecules, 2022, 27, 335.	3.8	13
3	Catalytic conversion of bioethanol to value-added chemicals and fuels: A review. , 2022, 1, 47-68.		13
4	Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: A technical review. Resources, Conservation and Recycling, 2022, 180, 106213.	10.8	40
5	Simulation of CO2 Capture Process in Flue Gas from Oxy-Fuel Combustion Plant and Effects of Properties of Absorbent. Separations, 2022, 9, 95.	2.4	7
6	A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids. Frontiers of Chemical Science and Engineering, 2021, 15, 4-17.	4.4	22
7	Kinetic study on the CO2 gasification of biochar derived from Miscanthus at different processing conditions. Energy, 2021, 217, 119341.	8.8	33
8	Enhancement of process modelling and simulation evaluation by deploying a test for assessment and feedback individualisation. Education for Chemical Engineers, 2021, 35, 29-36.	4.8	5
9	Integration of spent coffee grounds valorization for co-production of biodiesel and activated carbon: An energy and techno-economic case assessment in China. Journal of Cleaner Production, 2021, 324, 129187.	9.3	17
10	Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics. Chemical Engineering Journal, 2021, 420, 127588.	12.7	106
11	CO2 adsorption on Miscanthus × giganteus (MG) chars prepared in different atmospheres. Journal of CO2 Utilization, 2021, 52, 101670.	6.8	6
12	Bibliometric analysis of research trends on the thermochemical conversion of plastics during 1990–2020. Journal of Cleaner Production, 2021, 317, 128373.	9.3	16
13	Prediction of char production from slow pyrolysis of lignocellulosic biomass using multiple nonlinear regression and artificial neural network. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105286.	5.5	17
14	New process development and process evaluation for capturing CO2 in flue gas from power plants using ionic liquid [emim][Tf2N]. Chinese Journal of Chemical Engineering, 2020, 28, 721-732.	3.5	15
15	Co-pyrolysis of Miscanthus Sacchariflorus and coals: A systematic study on the synergies in thermal decomposition, kinetics and vapour phase products. Fuel, 2020, 262, 116603.	6.4	55
16	Density Functional Theory Study on the Mechanism of Biochar Gasification in CO ₂ Environment. Industrial & Engineering Chemistry Research, 2020, 59, 19972-19981.	3.7	13
17	Pyro-Oil and Wax Recovery from Reclaimed Plastic Waste in a Continuous Auger Pyrolysis Reactor. Energies, 2020, 13, 2040.	3.1	42
18	Steam gasification of Miscanthus derived char: the reaction kinetics and reactivity with correlation to the material composition and microstructure. Energy Conversion and Management, 2020, 219, 113026.	9.2	41

JIAWEI WANG

#	Article	IF	CITATIONS
19	Molten Solar Salt Pyrolysis of Mixed Plastic Waste: Process Simulation and Technoeconomic Evaluation. Energy & Fuels, 2020, 34, 7397-7409.	5.1	24
20	Computational and experimental studies on the CO2 adsorption of layered double hydroxide intercalated by anionic surfactant. Applied Clay Science, 2020, 190, 105556.	5.2	13
21	Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor. Frontiers of Chemical Science and Engineering, 2019, 13, 744-758.	4.4	14
22	Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions. Frontiers of Chemical Science and Engineering, 2019, 13, 702-717.	4.4	25
23	Linking the SO2 emission of cement plants to the sulfur characteristics of their limestones: A study of 80 NSP cement lines in China. Journal of Cleaner Production, 2019, 220, 200-211.	9.3	26
24	Preface to the CSCST-25 Special Issue. Frontiers of Chemical Science and Engineering, 2019, 13, 629-631.	4.4	1
25	Preparation and Optimization of Macroalgae-Derived Solid Acid Catalysts. Waste and Biomass Valorization, 2019, 10, 805-816.	3.4	11
26	Microporous frameworks with conjugated π-electron skeletons for enhanced gas and organic vapor capture. Microporous and Mesoporous Materials, 2018, 267, 80-83.	4.4	5
27	Effect of microwave irradiation on the viscosity of crude oil: A view at the molecular level. Fuel Processing Technology, 2018, 170, 44-52.	7.2	41
28	Preparation of Microporous Carbon from Sargassum horneri by Hydrothermal Carbonization and KOH Activation for CO2 Capture. Journal of Chemistry, 2018, 2018, 1-11.	1.9	21
29	Microporous frameworks based on adamantane building blocks: Synthesis, porosity, selective adsorption and functional application. Reactive and Functional Polymers, 2018, 130, 126-132.	4.1	10
30	A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Conversion and Management, 2018, 174, 406-416.	9.2	84
31	Sonochemical surface functionalization of exfoliated LDH: Effect on textural properties, CO2 adsorption, cyclic regeneration capacities and subsequent gas uptake for simultaneous methanol synthesis. Ultrasonics Sonochemistry, 2017, 39, 330-343.	8.2	19
32	Synthesis of thermochemically stable tetraphenyladamantane-based microporous polymers as gas storage materials. RSC Advances, 2017, 7, 16174-16180.	3.6	20
33	Microporous organic polymers based on hexaphenylbiadamantane: Synthesis, ultra-high stability and gas capture. Materials Letters, 2017, 187, 76-79.	2.6	11
34	Remote-controlled experiments with cloud chemistry. Nature Chemistry, 2015, 7, 1-5.	13.6	96
35	Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids. Journal of Colloid and Interface Science, 2014, 426, 72-79.	9.4	19
36	Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route. Chemical Engineering Journal, 2013, 215-216, 699-708.	12.7	74

JIAWEI WANG

#	Article	IF	CITATIONS
37	Hydrothermal Carbonization of Macroalgae and the Effects of Experimental Parameters on the Properties of Hydrochars. ACS Sustainable Chemistry and Engineering, 2013, 1, 1092-1101.	6.7	133
38	Materials challenges for the development of solid sorbents for post-combustion carbon capture. Journal of Materials Chemistry, 2012, 22, 2815-2823.	6.7	255
39	Preparation and CO2 adsorption of amine modified layered double hydroxide via anionic surfactant-mediated route. Chemical Engineering Journal, 2012, 181-182, 267-275.	12.7	20
40	Preparation and CO2 adsorption of amine modified Mg–Al LDH via exfoliation route. Chemical Engineering Science, 2012, 68, 424-431.	3.8	76
41	Deactivation during 1-Hexene Isomerization over Zeolite Y and ZSM5 Catalysts under Supercritical Conditions. Industrial & amp; Engineering Chemistry Research, 2011, 50, 7161-7171.	3.7	8
42	Improving the interpretation of mercury porosimetry data using computerised X-ray tomography and mean-field DFT. Chemical Engineering Science, 2011, 66, 2328-2339.	3.8	22
43	Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chemical Engineering Research and Design, 2011, 89, 1711-1721.	5.6	76
44	Modelling of pore structure evolution during catalyst deactivation and comparison with experiment. Chemical Engineering Science, 2010, 65, 5550-5558.	3.8	4
45	Prolonging catalyst lifetime in supercritical isomerization of 1-hexene over a platinum/alumina catalyst. Chemical Engineering Science, 2009, 64, 3427-3436.	3.8	8
46	Coke Formation and Characterization During 1-Hexene Isomerization and Oligomerization over H-ZSM-5 Catalyst under Supercritical Conditions. Industrial & Engineering Chemistry Research, 2009, 48, 7899-7909.	3.7	18
47	Coating carbon nanotubes with polymer in supercritical carbon dioxide. Chemical Communications, 2006, , 1670.	4.1	26
48	Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems. Journal of Materials Chemistry, 2006, 16, 1751.	6.7	67
49	Encapsulation and IR Probing of Cube-Shaped Octasilasesquioxane H8Si8O12 in Carbon Nanotubes. Angewandte Chemie - International Edition, 2006, 45, 5188-5191.	13.8	22
50	Synthesis of siliceous hollow spheres with large mesopore wall structure by supercritical CO2-in-water interface templating. Chemical Communications, 2005, , 210.	4.1	62
51	Selective host–guest interaction of single-walled carbon nanotubes with functionalised fullerenes. Chemical Communications, 2004, , 176-177.	4.1	85
52	Low temperature assembly of fullerene arrays in single-walled carbon nanotubes using supercritical fluids. Journal of Materials Chemistry, 2004, 14, 2852.	6.7	89