
Richard C Flagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/330426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gas/Particle Partitioning and Secondary Organic Aerosol Yields. Environmental Science & Technology, 1996, 30, 2580-2585.	4.6	1,383
2	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	13.7	1,114
3	Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6640-6645.	3.3	854
4	Scanning Electrical Mobility Spectrometer. Aerosol Science and Technology, 1990, 13, 230-240.	1.5	836
5	Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. Journal of Geophysical Research, 2003, 108, .	3.3	801
6	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	13.7	774
7	Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons. Journal of Atmospheric Chemistry, 1997, 26, 189-222.	1.4	736
8	Secondary Organic Aerosol Formation from Isoprene Photooxidation. Environmental Science & Technology, 2006, 40, 1869-1877.	4.6	734
9	Secondary organic aerosol formation from <i>m</i> -xylene, toluene, and benzene. Atmospheric Chemistry and Physics, 2007, 7, 3909-3922.	1.9	720
10	Marine aerosol formation from biogenic iodine emissions. Nature, 2002, 417, 632-636.	13.7	705
11	Organic aerosol formation from the oxidation of biogenic hydrocarbons. Journal of Geophysical Research, 1999, 104, 3555-3567.	3.3	666
12	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	13.7	540
13	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	13.7	528
14	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	6.0	456
15	Effect of NO _x level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmospheric Chemistry and Physics, 2007, 7, 5159-5174.	1.9	423
16	Secondary Organic Aerosol from the Photooxidation of Aromatic Hydrocarbons:Â Molecular Composition. Environmental Science & Technology, 1997, 31, 1345-1358.	4.6	383
17	Particle Phase Acidity and Oligomer Formation in Secondary Organic Aerosol. Environmental Science & Technology, 2004, 38, 6582-6589.	4.6	359
18	Aromatics, Reformulated Gasoline, and Atmospheric Organic Aerosol Formation. Environmental Science & Technology, 1997, 31, 1890-1897.	4.6	348

#	Article	IF	CITATIONS
19	Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons. Environmental Science & Technology, 2006, 40, 2283-2297.	4.6	341
20	Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. Journal of Geophysical Research, 2006, 111, .	3.3	332
21	Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. Journal of Geophysical Research, 2005, 110, .	3.3	316
22	Low-Molecular-Weight and Oligomeric Components in Secondary Organic Aerosol from the Ozonolysis of Cycloalkenes and α-Pinene. Journal of Physical Chemistry A, 2004, 108, 10147-10164.	1.1	308
23	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	3.3	300
24	Secondary organic aerosol formation from isoprene photooxidation under high-NOxconditions. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	297
25	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	6.0	289
26	Aerosol formation in the photooxidation of isoprene and Î ² -pinene. Atmospheric Environment Part A General Topics, 1991, 25, 997-1008.	1.3	278
27	State-of-the-Art Chamber Facility for Studying Atmospheric Aerosol Chemistry. Environmental Science & Technology, 2001, 35, 2594-2601.	4.6	263
28	Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. Atmospheric Chemistry and Physics, 2006, 6, 2367-2388.	1.9	263
29	Release of allergens as respirable aerosols: A link between grass pollen and asthma. Journal of Allergy and Clinical Immunology, 2002, 109, 51-56.	1.5	250
30	The Mobility and Structure of Aerosol Agglomerates. Aerosol Science and Technology, 1993, 18, 25-47.	1.5	247
31	Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. Journal of Geophysical Research, 2006, 111, .	3.3	237
32	Formation and evolution of molecular products in α-pinene secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14168-14173.	3.3	225
33	Coronavirus Disease 2019 Patients in Earlier Stages Exhaled Millions of Severe Acute Respiratory Syndrome Coronavirus 2 Per Hour. Clinical Infectious Diseases, 2021, 72, e652-e654.	2.9	211
34	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	3.3	208
35	History of Electrical Aerosol Measurements. Aerosol Science and Technology, 1998, 28, 301-380.	1.5	205
36	The hindered rotor density-of-states interpolation function. Journal of Chemical Physics, 1997, 106, 6675-6680.	1.2	203

#	Article	IF	CITATIONS
37	Atmospheric photooxidation of isoprene part I: The hydroxyl radical and ground state atomic oxygen reactions. International Journal of Chemical Kinetics, 1992, 24, 79-101.	1.0	201
38	Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds. Atmospheric Chemistry and Physics, 2014, 14, 3497-3510.	1.9	201
39	New particle formation from photooxidation of diiodomethane (CH2I2). Journal of Geophysical Research, 2003, 108, .	3.3	200
40	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	1.2	199
41	Causes and importance of new particle formation in the presentâ€day and preindustrial atmospheres. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8739-8760.	1.2	198
42	Production of ultrafine metal oxide aerosol particles by thermal decomposition of metal alkoxide vapors. AICHE Journal, 1986, 32, 2010-2019.	1.8	195
43	Comprehensive Simultaneous Shipboard and Airborne Characterization of Exhaust from a Modern Container Ship at Sea. Environmental Science & Technology, 2009, 43, 4626-4640.	4.6	192
44	Role of aldehyde chemistry and NO _x concentrations in secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2010, 10, 7169-7188.	1.9	190
45	Elemental composition and oxidation of chamber organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 8827-8845.	1.9	190
46	The wall shear stress produced by the normal impingement of a jet on a flat surface. Journal of Fluid Mechanics, 2000, 418, 351-375.	1.4	188
47	Oxalic acid in clear and cloudy atmospheres: Analysis of data from International Consortium for Atmospheric Research on Transport and Transformation 2004. Journal of Geophysical Research, 2006, 111, .	3.3	187
48	On the Source of Organic Acid Aerosol Layers above Clouds. Environmental Science & Technology, 2007, 41, 4647-4654.	4.6	182
49	Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols. Atmospheric Chemistry and Physics, 2013, 13, 8019-8043.	1.9	181
50	Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	177
51	Particle structure control in nanoparticle synthesis from the vapor phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 204, 113-124.	2.6	174
52	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	13.7	169
53	Atmospheric photooxidation of isoprene part II: The ozone-isoprene reaction. International Journal of Chemical Kinetics, 1992, 24, 103-125.	1.0	166
54	Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2010, 10, 4111-4131.	1.9	165

4

#	Article	IF	CITATIONS
55	Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres. Geophysical Research Letters, 1999, 26, 1145-1148.	1.5	164
56	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
57	Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Applied Physics Letters, 2001, 79, 433-435.	1.5	161
58	Radial Differential Mobility Analyzer. Aerosol Science and Technology, 1995, 23, 357-372.	1.5	150
59	Aerosol Formation in the Cyclohexene-Ozone System. Environmental Science & Technology, 2000, 34, 4894-4901.	4.6	150
60	Comprehensive airborne characterization of aerosol from a major bovine source. Atmospheric Chemistry and Physics, 2008, 8, 5489-5520.	1.9	143
61	Improved Inversion of Scanning DMA Data. Aerosol Science and Technology, 2002, 36, 1-9.	1.5	139
62	Composition and diurnal variability of the natural Amazonian aerosol. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	132
63	Vapor wall deposition in Teflon chambers. Atmospheric Chemistry and Physics, 2015, 15, 4197-4214.	1.9	125
64	On Differential Mobility Analyzer Resolution. Aerosol Science and Technology, 1999, 30, 556-570.	1.5	123
65	Particulate organic acids and overall waterâ€soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research, 2007, 112, .	3.3	121
66	The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. Journal of Geophysical Research, 2007, 112, .	3.3	118
67	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
68	Modeling and Characterization of a Particle-into-Liquid Sampler (PILS). Aerosol Science and Technology, 2006, 40, 396-409.	1.5	117
69	Secondary Organic Aerosol Formation from the Ozonolysis of Cycloalkenes and Related Compounds. Environmental Science & Technology, 2004, 38, 4157-4164.	4.6	116
70	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	5.8	116
71	On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California. Global Biogeochemical Cycles, 2009, 23, .	1.9	113
72	Cloud condensation nucleus activation properties of biogenic secondary organic aerosol. Journal of Geophysical Research, 2005, 110, .	3.3	110

#	Article	IF	CITATIONS
73	Aerosol-cloud drop concentration closure in warm cumulus. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	109
74	Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer. Journal of Geophysical Research, 2003, 108, .	3.3	107
75	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	3.3	107
76	Ultraclean Two-Stage Aerosol Reactor for Production of Oxide-Passivated Silicon Nanoparticles for Novel Memory Devices. Journal of the Electrochemical Society, 2001, 148, G265.	1.3	106
77	Toward aerosol/cloud condensation nuclei (CCN) closure during CRYSTAL-FACE. Journal of Geophysical Research, 2003, 108, .	3.3	101
78	Secondary organic aerosol yields of 12-carbon alkanes. Atmospheric Chemistry and Physics, 2014, 14, 1423-1439.	1.9	100
79	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	1.2	99
80	Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. Journal of Geophysical Research, 2007, 112, .	3.3	98
81	Characterization of Vapor Wall Loss in Laboratory Chambers. Environmental Science & Technology, 2010, 44, 5074-5078.	4.6	98
82	The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol. Atmospheric Chemistry and Physics, 2011, 11, 7417-7443.	1.9	98
83	Aerosol-cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. Journal of Geophysical Research, 2007, 112, .	3.3	97
84	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
85	New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmospheric Chemistry and Physics, 2018, 18, 845-863.	1.9	92
86	A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project. Journal of Geophysical Research, 2003, 108, .	3.3	90
87	Particle Wall Loss Rates in Vessels. Aerosol Science and Technology, 1982, 2, 303-309.	1.5	89
88	Eastern Pacific Emitted Aerosol Cloud Experiment. Bulletin of the American Meteorological Society, 2013, 94, 709-729.	1.7	89
89	Breath-, air- and surface-borne SARS-CoV-2 in hospitals. Journal of Aerosol Science, 2021, 152, 105693.	1.8	89
90	Scaleâ€up of electrospray atomization using linear arrays of Taylor cones. Review of Scientific Instruments, 1993, 64, 683-686.	0.6	88

6

#	Article	IF	CITATIONS
91	Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity. Atmospheric Chemistry and Physics, 2010, 10, 1585-1597.	1.9	86
92	Influence of particle-phase state on the hygroscopic behavior of mixed organic–inorganic aerosols. Atmospheric Chemistry and Physics, 2015, 15, 5027-5045.	1.9	86
93	Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research, 2009, 114, .	3.3	85
94	Chemical aging of <i>m</i> -xylene secondary organic aerosol: laboratory chamber study. Atmospheric Chemistry and Physics, 2012, 12, 151-167.	1.9	83
95	Resolution of the radial differential mobility analyzer for ultrafine particles. Journal of Aerosol Science, 1996, 27, 1179-1200.	1.8	80
96	Molecular composition of the water-soluble fraction of atmospheric carbonaceous aerosols collected during ACE-Asia. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	80
97	Constraining the contribution of organic acids and AMS <i>m/z</i> 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region. Geophysical Research Letters, 2010, 37, .	1.5	79
98	Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification. Aerosol Science and Technology, 2011, 45, 480-492.	1.5	79
99	Secondary Organic Aerosol Formation from Low-NO _{<i>x</i>} Photooxidation of Dodecane: Evolution of Multigeneration Gas-Phase Chemistry and Aerosol Composition. Journal of Physical Chemistry A, 2012, 116, 6211-6230.	1.1	79
100	Composition and hygroscopicity of the Los Angeles Aerosol: CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3016-3036.	1.2	79
101	An outdoor smog chamber and modeling study of toluene-NOx photooxidation. International Journal of Chemical Kinetics, 1985, 17, 177-216.	1.0	78
102	Meteorological Influences on Respirable Fragment Release from Chinese Elm Pollen. Aerosol Science and Technology, 2006, 40, 690-696.	1.5	77
103	Black carbon aerosol over the Los Angeles Basin during CalNex. Journal of Geophysical Research, 2012, 117, .	3.3	77
104	Synthesis of Yttria Powders by Electrospray Pyrolysis. Journal of the American Ceramic Society, 1994, 77, 3244-3250.	1.9	76
105	Fast Mixing Condensation Nucleus Counter: Application to Rapid Scanning Differential Mobility Analyzer Measurements. Aerosol Science and Technology, 2002, 36, 678-689.	1.5	75
106	Ship impacts on the marine atmosphere: insights into the contribution of shipping emissions to the properties of marine aerosol and clouds. Atmospheric Chemistry and Physics, 2012, 12, 8439-8458.	1.9	75
107	Asymmetric Instrument Response Resulting from Mixing Effects in Accelerated DMA-CPC Measurements. Aerosol Science and Technology, 1995, 23, 491-509.	1.5	74
108	Particle generation in a chemical vapor deposition process with seed particles. AICHE Journal, 1990, 36, 409-419.	1.8	73

#	Article	IF	CITATIONS
109	Aerosolâ€cloud relationships in continental shallow cumulus. Journal of Geophysical Research, 2008, 113, .	3.3	72
110	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	1.2	71
111	Ion Beam Synthesis of Luminescent SI and GE Nanocrystals in a Silicon Dioxide Matrix. Materials Research Society Symposia Proceedings, 1993, 316, 409.	0.1	70
112	Distortion of Size Distributions by Condensation and Evaporation in Aerosol Instruments. Aerosol Science and Technology, 1987, 7, 231-246.	1.5	69
113	Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements. Journal of Geophysical Research, 2003, 108, ACE 24-1-ACE 24-22.	3.3	68
114	Molecular understanding of new-particle formation from <i>α</i> -pinene between â^'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	1.9	68
115	Diffusional losses in particle sampling systems containing bends and elbows. Journal of Aerosol Science, 2002, 33, 843-857.	1.8	66
116	Scanning electrical mobility spectrometer. Journal of Aerosol Science, 1989, 20, 1485-1488.	1.8	65
117	The Scanning DMA Transfer Function. Aerosol Science and Technology, 2004, 38, 833-850.	1.5	65
118	Rapid, Size-Resolved Aerosol Hygroscopic Growth Measurements: Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP). Aerosol Science and Technology, 2008, 42, 445-464.	1.5	65
119	Marine stratocumulus aerosolâ€cloud relationships in the MASEâ€II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus. Journal of Geophysical Research, 2009, 114, .	3.3	65
120	Clear-column radiative closure during ACE-Asia: Comparison of multiwavelength extinction derived from particle size and composition with results from Sun photometry. Journal of Geophysical Research, 2002, 107, AAC 7-1-AAC 7-22.	3.3	64
121	Aerosol hygroscopicity in the marine atmosphere: a closure study using high-time-resolution, multiple-RH DASH-SP and size-resolved C-ToF-AMS data. Atmospheric Chemistry and Physics, 2009, 9, 2543-2554.	1.9	64
122	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	4.7	61
123	Instrument to collect fogwater for chemical analysis. Review of Scientific Instruments, 1985, 56, 1291-1293.	0.6	60
124	Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences, 2014, 11, 1461-1478.	1.3	59
125	Overview of measurements and current instrumentation for 1–10Ânm aerosol particle number size distributions. Journal of Aerosol Science, 2020, 148, 105584.	1.8	58
126	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	1.9	58

#	Article	IF	CITATIONS
127	Size classification of silicon nanocrystals. Applied Physics Letters, 1996, 68, 3162-3164.	1.5	57
128	Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County. Atmospheric Chemistry and Physics, 2011, 11, 8257-8270.	1.9	56
129	Ion–Aerosol Flux Coefficients and the Steady-State Charge Distribution of Aerosols in a Bipolar Ion Environment. Aerosol Science and Technology, 2013, 47, 688-704.	1.5	55
130	Ash Vaporization and Condensation During Combustion of a Suspended Coal Particle. Aerosol Science and Technology, 1982, 1, 371-383.	1.5	54
131	The Influence of Combustor Operation on Fine Particles from Coal Combustion. Aerosol Science and Technology, 1981, 1, 103-117.	1.5	51
132	Nanometerâ€scale GaAs clusters from organometallic precursors. Applied Physics Letters, 1992, 61, 696-698.	1.5	51
133	Charging of single Si nanocrystals by atomic force microscopy. Applied Physics Letters, 2001, 78, 3133-3135.	1.5	51
134	Anvil glaciation in a deep cumulus updraught over Florida simulated with the Explicit Microphysics Model. I: Impact of various nucleation processes. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 2019-2046.	1.0	51
135	High-speed pollen release in the white mulberry tree, Morus alba L. Sexual Plant Reproduction, 2006, 19, 19-24.	2.2	51
136	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	4.6	51
137	Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 2019, 100, 1511-1528.	1.7	51
138	A simple and versatile mini-arc plasma source for nanocrystal synthesis. Journal of Nanoparticle Research, 2007, 9, 203-213.	0.8	50
139	Radial Differential Mobility Analyzer for One Nanometer Particle Classification. Aerosol Science and Technology, 2009, 43, 53-59.	1.5	50
140	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	1.9	50
141	Onset of runaway nucleation in aerosol reactors. Journal of Applied Physics, 1987, 61, 1365-1371.	1.1	49
142	Water-soluble organic aerosol in the Los Angeles Basin and outflow regions: Airborne and ground measurements during the 2010 CalNex field campaign. Journal of Geophysical Research, 2011, 116, .	3.3	49
143	Effect of chemical structure on secondary organic aerosol formation from C ₁₂ alkanes. Atmospheric Chemistry and Physics, 2013, 13, 11121-11140.	1.9	48
144	Homogeneous Nucleation by Continuous Mixing of High Temperature Vapor with Room Temperature Gas. Aerosol Science and Technology, 1987, 6, 15-27.	1.5	47

#	Article	IF	CITATIONS
145	Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NO _{<i>x</i>} conditions. Atmospheric Chemistry and Physics, 2019, 19, 7255-7278.	1.9	46
146	Airborne measurements of atmospheric carbonaceous aerosols during ACE-Asia. Journal of Geophysical Research, 2002, 107, AAC 13-1-AAC 13-21.	3.3	45
147	Role of ozone in SOA formation from alkane photooxidation. Atmospheric Chemistry and Physics, 2014, 14, 1733-1753.	1.9	43
148	Environmental snapshots from ACE-Asia. Journal of Geophysical Research, 2004, 109, .	3.3	42
149	Analysis of secondary organic aerosol formation and aging using positive matrix factorization of high-resolution aerosol mass spectra: application to the dodecane low-NO _x system. Atmospheric Chemistry and Physics, 2012, 12, 11795-11817.	1.9	42
150	Secondary Organic Aerosol Coating Formation and Evaporation: Chamber Studies Using Black Carbon Seed Aerosol and the Single-Particle Soot Photometer. Aerosol Science and Technology, 2013, 47, 326-347.	1.5	42
151	Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols. Environmental Science & Technology, 2016, 50, 12241-12249.	4.6	42
152	A Differential Mobility Analyzer (DMA) System for Submicron Aerosol Measurements at Ambient Relative Humidity. Aerosol Science and Technology, 2003, 37, 46-52.	1.5	41
153	Determination of Water Activity in Ammonium Sulfate and Sulfuric Acid Mixtures Using Levitated Single Particles. Aerosol Science and Technology, 1994, 20, 275-284.	1.5	40
154	Vapor phase synthesis of crystalline nanometerâ€scale GaAs clusters. Applied Physics Letters, 1992, 60, 950-952.	1.5	39
155	The Caltech Photooxidation Flow Tube reactor: design, fluid dynamics and characterization. Atmospheric Measurement Techniques, 2017, 10, 839-867.	1.2	39
156	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	1.9	38
157	Sizing Characterization of the Fast-Mobility Particle Sizer (FMPS) Against SMPS and HR-ToF-AMS. Aerosol Science and Technology, 2013, 47, 1030-1037.	1.5	37
158	Fourier transform infrared spectroscopy of a single aerosol particle. Journal of Chemical Physics, 1987, 86, 5897-5903.	1.2	36
159	Differential Mobility Analysis of Aerosols: A Tutorial. KONA Powder and Particle Journal, 2008, 26, 254-268.	0.9	36
160	Experimental control of ultrafine TiO2 particle generation from thermal decomposition of titanium tetraisopropoxide vapor. Chemical Engineering Science, 1989, 44, 1369-1375.	1.9	35
161	Characterization of the Structure of Agglomerate Particles. Particle and Particle Systems Characterization, 1992, 9, 19-27.	1.2	35
162	The inviscid impingement of a jet with arbitrary velocity profile. Physics of Fluids, 2000, 12, 2046-2055.	1.6	35

#	Article	IF	CITATIONS
163	Characterization of ambient aerosol from measurements of cloud condensation nuclei during the 2003 Atmospheric Radiation Measurement Aerosol Intensive Observational Period at the Southern Great Plains site in Oklahoma. Journal of Geophysical Research, 2006, 111, .	3.3	35
164	Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China. Scientific Reports, 2018, 8, 934.	1.6	35
165	Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols. Atmospheric Chemistry and Physics, 2016, 16, 12767-12792.	1.9	34
166	Opposed Migration Aerosol Classifier (OMAC). Aerosol Science and Technology, 2004, 38, 890-899.	1.5	33
167	On the representation of droplet coalescence and autoconversion: Evaluation using ambient cloud droplet size distributions. Journal of Geophysical Research, 2009, 114, .	3.3	33
168	Observations of continental biogenic impacts on marine aerosol and clouds off the coast of California. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6724-6748.	1.2	33
169	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â^50 °C and +25 °C. Environmental Science & Technology, 2019, 53, 12357-12365.	4.6	32
170	Statistical comparison of properties of simulated and observed cumulus clouds in the vicinity of Houston during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research, 2008, 113, .	3.3	31
171	Relationships between giant sea salt particles and clouds inferred from aircraft physicochemical data. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3421-3434.	1.2	30
172	Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmospheric Chemistry and Physics, 2016, 16, 293-304.	1.9	29
173	A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds. Scientific Data, 2018, 5, 180026.	2.4	29
174	Parameterization of cloud droplet size distributions: Comparison with parcel models and observations. Journal of Geophysical Research, 2009, 114, .	3.3	28
175	<i>In Situ</i> Study of Single Aqueous Droplet Solidification of Ceramic Precursors Used for Spray Pyrolysis. Journal of the American Ceramic Society, 1998, 81, 646-648.	1.9	27
176	A Scalable Turbulent Mixing Aerosol Reactor for Oxide-Coated Silicon Nanoparticles. Industrial & Engineering Chemistry Research, 2005, 44, 6332-6341.	1.8	27
177	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ SO ₄ –H <sub and ternary (H₂SO₄–H<sub< td=""><td>1.9</td><td>27</td></sub<></sub 	1.9	27
178	System. Atmospheric Chemistry and Physics, 2015, 15, 10701 10721. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3704-3723.	1.2	27
179	Evaluation and control of particle properties in aerosol reactors. AICHE Journal, 1988, 34, 1249-1256.	1.8	26
180	Determination of Particle Vapor Pressures Using the Tandem Differential Mobility Analyzer. Aerosol Science and Technology, 1993, 19, 3-14.	1.5	26

#	Article	IF	CITATIONS
181	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	13.7	26
182	Particle sizing in the electrodynamic balance. Review of Scientific Instruments, 1986, 57, 933-936.	0.6	25
183	Novel Aerosol/Gas Inlet for Aircraft-Based Measurements. Aerosol Science and Technology, 2003, 37, 828-840.	1.5	25
184	Biomass Burning Plumes in the Vicinity of the California Coast: Airborne Characterization of Physicochemical Properties, Heating Rates, and Spatiotemporal Features. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,560.	1.2	25
185	Stratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear–Cloudy Interface. Journals of the Atmospheric Sciences, 2016, 73, 1083-1099.	0.6	24
186	Electrical mobility measurements of fine-particle formation during chamber studies of atmospheric photochemical reactions. Environmental Science & Technology, 1991, 25, 883-890.	4.6	22
187	Effect of particle charge on aerosol dynamics in Teflon environmental chambers. Aerosol Science and Technology, 2018, 52, 854-871.	1.5	22
188	Reaction Sintering of Submicrometer Silicon Powder. Journal of the American Ceramic Society, 1987, 70, C-52-C-55.	1.9	21
189	Contrasting cloud composition between coupled and decoupled marine boundary layer clouds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,679.	1.2	21
190	Scanning DMA Data Analysis I. Classification Transfer Function. Aerosol Science and Technology, 2018, 52, 1382-1399.	1.5	21
191	Evaluation of an entraining droplet activation parameterization using in situ cloud data. Journal of Geophysical Research, 2011, 116, .	3.3	20
192	Studies in binary nucleation: The dibutylphthalate/dioctylphthalate system. Journal of Chemical Physics, 1988, 89, 6442-6453.	1.2	19
193	The physics of extreme sensitivity in whispering gallery mode optical biosensors. Journal of Applied Physics, 2012, 111, 084701.	1.1	19
194	Entrainment of fine particles from surfaces by gas jets impinging at oblique incidence. Experiments in Fluids, 2001, 30, 135-142.	1.1	18
195	Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12301-12318.	1.2	18
196	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	1.5	18
197	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.	1.2	17
198	Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. , 2013, 10, 3977-4023.		17

#	Article	IF	CITATIONS
199	Single-particle levitation system for automated study of homogeneous solute nucleation. Review of Scientific Instruments, 2006, 77, 073901.	0.6	16
200	Cloud Adiabaticity and Its Relationship to Marine Stratocumulus Characteristics Over the Northeast Pacific Ocean. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,790.	1.2	16
201	Scanning DMA data analysis II. Integrated DMA-CPC instrument response and data inversion. Aerosol Science and Technology, 2018, 52, 1400-1414.	1.5	16
202	Grand challenges for aerosol science and technology. Aerosol Science and Technology, 2019, 53, 731-734.	1.5	16
203	Rate constants for the gas-phase reaction of the hydroxyl radical with a series of dimethylbenzaldehydes and trimethylphenols at atmospheric pressure. International Journal of Chemical Kinetics, 1997, 29, 523-525.	1.0	15
204	Space-charge effects in nanoparticle processing using the differential mobility analyzer. Journal of Aerosol Science, 2001, 32, 583-599.	1.8	15
205	Ion Mobility-Mass Spectrometry with a Radial Opposed Migration Ion and Aerosol Classifier (ROMIAC). Analytical Chemistry, 2013, 85, 6319-6326.	3.2	15
206	Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations. Earth and Space Science, 2020, 7, e2020EA001098.	1.1	15
207	Evaporation and Growth of Multicomponent Aerosols Laboratory Applications. Aerosol Science and Technology, 1987, 6, 1-14.	1.5	14
208	Marine aerosols and iodine emissions (Reply). Nature, 2005, 433, E13-E14.	13.7	14
209	Continuous-Flow Differential Mobility Analysis of Nanoparticles and Biomolecules. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 255-279.	3.3	14
210	A new high-transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3†nm ions at ambient concentrations. Atmospheric Measurement Techniques, 2016, 9, 2709-2720.	1.2	14
211	A note on the effects of inorganic seed aerosol on the oxidation state of secondary organic aerosol— <i>α</i> â€Pinene ozonolysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,476.	1.2	14
212	Charge distribution uncertainty in differential mobility analysis of aerosols. Aerosol Science and Technology, 2017, 51, 1168-1189.	1.5	14
213	Population Balances of Micron-Sized Aerosols in a Bipolar Ion Environment. Aerosol Science and Technology, 2013, 47, 681-687.	1.5	13
214	Thermodynamic properties and homogeneous nucleation rates for surfaceâ€melted physical clusters. Journal of Chemical Physics, 1996, 105, 7648-7663.	1.2	12
215	Science of the Environmental Chamber. , 2017, , 1-93.		12
216	Chemical composition of nanoparticles from <i>α</i> -pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and Physics, 2021, 21, 17099-17114.	1.9	12

#	Article	IF	CITATIONS
217	Free energy and surface tension of arbitrarily large Mackay icosahedral clusters. Journal of Chemical Physics, 1995, 102, 3322-3330.	1.2	11
218	Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments. Atmospheric Chemistry and Physics, 2016, 16, 3651-3664.	1.9	11
219	Design, simulation, and characterization of a radial opposed migration ion and aerosol classifier (ROMIAC). Aerosol Science and Technology, 2017, 51, 801-823.	1.5	11
220	On the presence of giant particles downwind of ships in the marine boundary layer. Geophysical Research Letters, 2015, 42, 2024-2030.	1.5	10
221	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
222	An Asymptotic Analysis of Differential Electrical Mobility Classifiers. Aerosol Science and Technology, 2011, 45, 727-739.	1.5	9
223	Aerosol Dynamics in Atmospheric Aromatic Photooxidation. Aerosol Science and Technology, 1989, 10, 515-534.	1.5	8
224	Si-Cluster Luminescence. Materials Research Society Symposia Proceedings, 1992, 283, 77.	0.1	8
225	Los Angeles Basin airborne organic aerosol characterization during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,453.	1.2	8
226	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	0.9	8
227	Stratospheric Aerosol Sampling: Effect of a Blunt-Body Housing on Inlet Sampling Characteristics. Aerosol Science and Technology, 2004, 38, 1080-1090.	1.5	7
228	Continuous Flow Ion Mobility Separation with Mass Spectrometric Detection Using a Nano-Radial Differential Mobility Analyzer at Low Flow Rates. Analytical Chemistry, 2013, 85, 4335-4341.	3.2	6
229	On the relationship between cloud water composition and cloud droplet number concentration. Atmospheric Chemistry and Physics, 2020, 20, 7645-7665.	1.9	6
230	Variability of the penetration of particles through facemasks. Aerosol Science and Technology, 2022, 56, 186-203.	1.5	6
231	A thermodynamically consistent kinetic framework for binary nucleation. Journal of Chemical Physics, 2007, 127, 214503.	1.2	5
232	The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles. Atmospheric Measurement Techniques, 2021, 14, 5429-5445.	1.2	5
233	Effect of Angle of Attack on the Performance of an Airborne Counterflow Virtual Impactor. Aerosol Science and Technology, 2005, 39, 485-491.	1.5	4
234	A tool for uniform coating of 300-mm wafers with nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	4

#	Article	IF	CITATIONS
235	The Spider DMA: A miniature radial differential mobility analyzer. Aerosol Science and Technology, 2020, 54, 175-189.	1.5	4
236	Diffusional transfer function for the scanning electrical mobility spectrometer (SEMS). Aerosol Science and Technology, 2020, 54, 1157-1168.	1.5	3
237	Efficacy of a portable, moderate-resolution, fast-scanning differential mobility analyzer for ambient aerosol size distribution measurements. Atmospheric Measurement Techniques, 2021, 14, 4507-4516.	1.2	2
238	The role of Ga-droplet formation in nanometer-scale GaAs cluster synthesis from organometallic precursors. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 26, 219-221.	1.0	1
239	Synthesis of Size-Classified Silicon Nanocrystals. Materials Research Society Symposia Proceedings, 1995, 405, 259.	0.1	1
240	Novel estimation of aerosol processes with particle size distribution measurements: a case study with the TOMAS algorithm v1.0.0. Geoscientific Model Development, 2021, 14, 1821-1839.	1.3	1
241	Heterogeneous Reactions of GaAs Quantum Dots with Organometallic Precursors. Materials Research Society Symposia Proceedings, 1992, 283, 771.	0.1	0
242	Probing the Chemical Dynamics of Aerosols. Advances in Chemistry Series, 1993, , 185-210.	0.6	0
243	Measurements of cluster ions using a nano radial DMA and a particle size magnifier in CLOUD. , 2013, , .		0