
Tetsuya Kako

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3301348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An orthophosphate semiconductor with photooxidation properties under visible-lightÂirradiation. Nature Materials, 2010, 9, 559-564.	27.5	1,807
2	In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production. Advanced Functional Materials, 2016, 26, 6822-6829.	14.9	583
3	Photothermal Conversion of CO ₂ into CH ₄ with H ₂ over Groupâ€VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production. Angewandte Chemie - International Edition, 2014, 53, 11478-11482.	13.8	385
4	Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2016, 138, 9128-9136.	13.7	341
5	Photophysical and Photocatalytic Properties of SrTiO3Doped with Cr Cations on Different Sites. Journal of Physical Chemistry B, 2006, 110, 15824-15830.	2.6	325
6	Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Science and Technology of Advanced Materials, 2011, 12, 034401.	6.1	292
7	Efficient Photocatalytic Decomposition of Acetaldehyde over a Solid-Solution Perovskite (Ag _{0.75} Sr _{0.25})(Nb _{0.75} Ti _{0.25})O ₃ under Visible-Light Irradiation. Journal of the American Chemical Society, 2008, 130, 2724-2725.	13.7	291
8	Natureâ€Inspired Environmental "Phosphorylation†Boosts Photocatalytic H ₂ Production over Carbon Nitride Nanosheets under Visibleâ€Light Irradiation. Angewandte Chemie - International Edition, 2015, 54, 13561-13565.	13.8	287
9	Enhanced Incident Photon-to-Electron Conversion Efficiency of Tungsten Trioxide Photoanodes Based on 3D-Photonic Crystal Design. ACS Nano, 2011, 5, 4310-4318.	14.6	267
10	Direct and Selective Photocatalytic Oxidation of CH ₄ to Oxygenates with O ₂ on Cocatalysts/ZnO at Room Temperature in Water. Journal of the American Chemical Society, 2019, 141, 20507-20515.	13.7	253
11	Anatase TiO ₂ Single Crystals Exposed with High-Reactive {111} Facets Toward Efficient H ₂ Evolution. Chemistry of Materials, 2013, 25, 405-411.	6.7	248
12	The Effects of Crystal Structure and Electronic Structure on Photocatalytic H ₂ Evolution and CO ₂ Reduction over Two Phases of Perovskite-Structured NaNbO ₃ . Journal of Physical Chemistry C, 2012, 116, 7621-7628.	3.1	243
13	High-Active Anatase TiO ₂ Nanosheets Exposed with 95% {100} Facets Toward Efficient H ₂ Evolution and CO ₂ Photoreduction. ACS Applied Materials & Interfaces, 2013, 5, 1348-1354.	8.0	203
14	Superior Photocatalytic H ₂ Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor. Advanced Materials, 2017, 29, 1703258.	21.0	188
15	Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 408-416.	8.0	179
16	Decomposition of Organic Compounds over NaBiO3 under Visible Light Irradiation. Chemistry of Materials, 2007, 19, 198-202.	6.7	176
17	Photocatalytic CO ₂ conversion over alkali modified TiO ₂ without loading noble metal cocatalyst. Chemical Communications, 2014, 50, 11517-11519.	4.1	162
18	Synthesis and Photocatalytic Activities of NaNbO ₃ Rods Modified by In ₂ O ₃ Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 6157-6162.	3.1	159

#	Article	IF	CITATIONS
19	A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nature Catalysis, 2021, 4, 1032-1042.	34.4	156
20	Visible-Light-Mediated Methane Activation for Steam Methane Reforming under Mild Conditions: A Case Study of Rh/TiO ₂ Catalysts. ACS Catalysis, 2018, 8, 7556-7565.	11.2	126
21	Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Applied Catalysis B: Environmental, 2018, 224, 60-68.	20.2	125
22	A new heterojunction Ag3PO4/Cr-SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation. Applied Catalysis B: Environmental, 2013, 134-135, 286-292.	20.2	123
23	Photocatalytic activities of AgSbO3 under visible light irradiation. Catalysis Today, 2008, 131, 197-202.	4.4	121
24	lon-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chemical Communications, 2011, 47, 2041.	4.1	119
25	New Series of Solid-Solution Semiconductors (AgNbO ₃) _{1â^{^*}<i>x</i>} (SrTiO ₃) _{<i>x</i>} with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C, 2009. 113. 3785-3792.	3.1	116
26	Band-structure-controlled BiO(ClBr) _{(1â^'x)/2} I _x solid solutions for visible-light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 8123-8132.	10.3	114
27	Selective Photo-oxidation of Methane to Methanol with Oxygen over Dual-Cocatalyst-Modified Titanium Dioxide. ACS Catalysis, 2020, 10, 14318-14326.	11.2	114
28	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. Angewandte Chemie - International Edition, 2017, 56, 5570-5574.	13.8	104
29	Ag ₃ PO ₄ /In(OH) ₃ Composite Photocatalysts with Adjustable Surface-Electric Property for Efficient Photodegradation of Organic Dyes under Simulated Solar-Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 17716-17724.	3.1	101
30	Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1â^'x(NaNbO3)x solid solutions. Journal of Solid State Chemistry, 2007, 180, 2845-2850.	2.9	98
31	Mesoporous zinc germanium oxynitride for CO2photoreduction under visible light. Chemical Communications, 2012, 48, 1269-1271.	4.1	98
32	n-type boron phosphide as a highly stable, metal-free, visible-light-active photocatalyst for hydrogen evolution. Nano Energy, 2016, 28, 158-163.	16.0	94
33	Constructing cubic–orthorhombic surface-phase junctions of NaNbO ₃ towards significant enhancement of CO ₂ photoreduction. Journal of Materials Chemistry A, 2014, 2, 5606-5609.	10.3	93
34	Synthesis and enhanced photocatalytic activity of NaNbO3 prepared by hydrothermal and polymerized complex methods. Journal of Physics and Chemistry of Solids, 2008, 69, 2487-2491.	4.0	91
35	Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO ₃ and their photocatalytic properties. Journal of Materials Chemistry A, 2013, 1, 1185-1191.	10.3	89
36	An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation. Dalton Transactions, 2013, 42, 2687.	3.3	86

#	Article	IF	CITATIONS
37	Porous-structured Cu ₂ 0/TiO ₂ nanojunction material toward efficient CO ₂ photoreduction. Nanotechnology, 2014, 25, 165402.	2.6	86
38	Size-Dependent Mie's Scattering Effect on TiO ₂ Spheres for the Superior Photoactivity of H ₂ Evolution. Journal of Physical Chemistry C, 2012, 116, 3833-3839.	3.1	84
39	Carbon Nitride Polymers Sensitized with N-Doped Tantalic Acid for Visible Light-Induced Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2010, 114, 4100-4105.	3.1	76
40	Efficient photocatalytic CO 2 reduction in all-inorganic aqueous environment: Cooperation between reaction medium and Cd(II) modified colloidal ZnS. Nano Energy, 2017, 34, 524-532.	16.0	74
41	Photoinduced Hydrophilic and Electrochemical Properties of Nitrogen-Doped TiO[sub 2] Films. Journal of the Electrochemical Society, 2005, 152, E351.	2.9	72
42	Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation. Electrochemistry Communications, 2011, 13, 275-278.	4.7	71
43	Photoelectrochemical Properties of Nanomultiple CaFe ₂ O ₄ /ZnFe ₂ O ₄ <i>pn</i> Junction Photoelectrodes. Langmuir, 2013, 29, 3116-3124.	3.5	69
44	Photocatalytic degradation of MB on MIn2O4 (M=alkali earth metal) under visible light: effects of crystal and electronic structure on the photocatalytic activity. Catalysis Today, 2004, 93-95, 885-889.	4.4	58
45	Mesoporous In(OH)3 for photoreduction of CO2 into renewable hydrocarbon fuels. Applied Surface Science, 2013, 280, 418-423.	6.1	58
46	Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. International Journal of Hydrogen Energy, 2011, 36, 4716-4723.	7.1	56
47	Crystal-facet-dependent hot-electron transfer in plasmonic-Au/semiconductor heterostructures for efficient solar photocatalysis. Journal of Materials Chemistry C, 2015, 3, 7538-7542.	5.5	55
48	Band structure design and photocatalytic activity of In2O3/N–InNbO4 composite. Applied Physics Letters, 2009, 95, .	3.3	49
49	An Ag ₃ PO ₄ /nitridized Sr ₂ Nb ₂ O ₇ composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation. Nanoscale, 2014, 6, 7303-7311.	5.6	49
50	Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation. Dalton Transactions, 2009, , 2423.	3.3	48
51	Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %. Applied Catalysis B: Environmental, 2020, 272, 118965.	20.2	42
52	2-Propanol photodegradation over lead niobates under visible light irradiation. Applied Catalysis A: General, 2007, 326, 1-7.	4.3	40
53	Strong adsorption and effective photocatalytic activities of one-dimensional nano-structured silver titanates. Applied Catalysis A: General, 2010, 375, 85-91.	4.3	39
54	Selective local nitrogen doping in a TiO2 electrode for enhancing photoelectrochemical water splitting. Chemical Communications, 2012, 48, 8649.	4.1	37

#	Article	IF	CITATIONS
55	Nanoarchitectonics of a Au nanoprism array on WO ₃ film for synergistic optoelectronic response. Science and Technology of Advanced Materials, 2011, 12, 044604.	6.1	34
56	WO3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation. Chemical Communications, 2010, 46, 5352.	4.1	32
57	Synthesis of hierarchical Ag2ZnGeO4 hollow spheres for enhanced photocatalytic property. Chemical Communications, 2012, 48, 9894.	4.1	31
58	One-pot synthesis of peroxo-titania nanopowder and dual photochemical oxidation in aqueous methanol solution. Journal of Colloid and Interface Science, 2009, 331, 132-137.	9.4	30
59	Photoanodic properties of pulsed-laser-deposited α-Fe ₂ O ₃ electrode. Journal Physics D: Applied Physics, 2010, 43, 325101.	2.8	30
60	Undoped visible-light-sensitive titania photocatalyst. Journal of Materials Science, 2013, 48, 108-114.	3.7	30
61	PbS/CdS nanocrystal-sensitized titanate network films: enhanced photocatalytic activities and super-amphiphilicity. Journal of Materials Chemistry, 2010, 20, 10187.	6.7	25
62	Prevention against catalytic poisoning by H2S utilizing TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 131-135.	3.9	24
63	Synergistic effect of different phase on the photocatalytic activity of visible light sensitive silver antimonates. Journal of Molecular Catalysis A, 2010, 320, 79-84.	4.8	21
64	Adhesion and Sliding of Snow on Hydrophobic Solid Surface Journal of the Ceramic Society of Japan, 2002, 110, 186-192.	1.3	20
65	Photocatalytic oxidation of 2-propanol in the gas phase over cesium bismuth niobates under visible light irradiation. Research on Chemical Intermediates, 2005, 31, 359-364.	2.7	20
66	Photocatalytic Decomposition of Acetaldehyde over Rubidium Bismuth Niobates under Visible Light Irradiation. Materials Transactions, 2005, 46, 2694-2698.	1.2	19
67	Photogenerated Charge Carriers Dynamics on La- and/or Cr-Doped SrTiO ₃ Nanoparticles Studied by Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 1292-1302.	3.1	19
68	Photoinduced Amphiphilic Property of InNbO4Thin Film. Langmuir, 2007, 23, 1924-1927.	3.5	18
69	Enhancement of photocatalytic activity for WO3 by simple NaOH loading. Applied Catalysis A: General, 2014, 488, 183-188.	4.3	18
70	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. Angewandte Chemie, 2017, 129, 5662-5666.	2.0	17
71	Comparison of photocatalytic activities of two kinds of lead magnesium niobate for decomposition of organic compounds under visible-light irradiation. Journal of Materials Research, 2007, 22, 2590-2597.	2.6	14
72	Preparation and characterization of visible light sensitive Fe- and Ta-codoped TiO2 photocatalyst. Journal of Materials Research, 2010, 25, 110-116.	2.6	13

#	Article	IF	CITATIONS
73	Solid-base loaded WO ₃ photocatalyst for decomposition of harmful organics under visible light irradiation. APL Materials, 2015, 3, 104411.	5.1	13
74	Response to Comment on "High-Active Anatase TiO ₂ Nanosheets Exposed with 95% {100} Facets Toward Efficient H ₂ Evolution and CO ₂ Photoreduction― ACS Applied Materials & Interfaces, 2013, 5, 8262-8262.	8.0	11
75	Enhanced N-doping efficiency and photocatalytic H ₂ evolution rate of InNbO ₄ by mechanochemical activation. Journal of Materials Research, 2010, 25, 159-166.	2.6	10
76	Comparison of photocatalytic properties of a batch reactor with those of a flow reactor in a nearly controlled mass transport region. Research on Chemical Intermediates, 2005, 31, 371-378.	2.7	8
77	Ultrafine Zn1â^xCuxS (0 ≤ ≤0.066) nanocrystallites for photocatalytic H2 evolution under visible light irradiation. RSC Advances, 2013, 3, 10654.	3.6	6
78	Photoassisted fabrication of zinc indium oxide/oxysulfide composite for enhanced photocatalytic H ₂ evolution under visible-light irradiation. Science and Technology of Advanced Materials, 2012, 13, 055001.	6.1	5
79	Study on the enhancement of photocatalytic environment purification through ubiquitous-red-clay loading. SN Applied Sciences, 2019, 1, 1.	2.9	4
80	Photocatalytic activity of silver-loaded or unloaded titanium dioxide coating in the removal of hydrogen sulfide. Research on Chemical Intermediates, 2005, 31, 441-448.	2.7	3
81	Rücktitelbild: Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation (Angew. Chem. 20/2017). Angewandte Chemie, 2017, 129, 5724-5724.	2.0	0