Noé Lugaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3300859/publications.pdf

Version: 2024-02-01

61984 95266 5,187 136 43 68 citations h-index g-index papers 149 149 149 2239 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Widespread 1–2 MeV Energetic Particles Associated with Slow and Narrow Coronal Mass Ejections: Parker Solar Probe and STEREO Measurements. Astrophysical Journal, 2022, 925, 96.	4.5	3
2	Investigating the Cross Sections of Coronal Mass Ejections through the Study of Nonradial Flows with STEREO/PLASTIC. Astrophysical Journal, 2022, 927, 68.	4.5	9
3	SpaceX—Sailing Close to the Space Weather?. Space Weather, 2022, 20, .	3.7	43
4	Causes and Consequences of Magnetic Complexity Changes within Interplanetary Coronal Mass Ejections: A Statistical Study. Astrophysical Journal, 2022, 927, 102.	4.5	16
5	Thank You to Our 2021 Peer Reviewers. Space Weather, 2022, 20, .	3.7	O
6	A Coronal Mass Ejection and Magnetic Ejecta Observed In Situ by STEREO-A and Wind at 55° Angular Separation. Astrophysical Journal, 2022, 929, 149.	4.5	11
7	On the utility of flux rope models for CME magnetic structure below 30 <mml:math altimg="si146.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nm <mark>?:6</mark> 0>âŝ	Š™ ^c (/mml:mo:
8	Estimating the Injection Duration of 20 MeV Protons in Large Western Solar Energetic Particle Events. Astrophysical Journal, 2022, 930, 51.	4.5	2
9	Multi-spacecraft Observations of the Evolution of Interplanetary Coronal Mass Ejections between 0.3 and 2.2 au: Conjunctions with the Juno Spacecraft. Astrophysical Journal, 2022, 933, 127.	4.5	9
10	Acceleration and Expansion of a Coronal Mass Ejection in the High Corona: Role of Magnetic Reconnection. Astrophysical Journal, 2022, 933, 169.	4.5	6
11	An Encounter With the Ion and Electron Diffusion Regions at a Flapping and Twisted Tail Current Sheet. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028903.	2.4	8
12	Thank You to Our 2020 Reviewers. Space Weather, 2021, 19, e2021SW002756.	3.7	0
13	Plain Language Summaries Required for Submission to the <i>Space Weather</i> Journal. Space Weather, 2021, 19, e2021SW002760.	3.7	2
14	A Quarter Century of <i>Wind </i> Spacecraft Discoveries. Reviews of Geophysics, 2021, 59, e2020RG000714.	23.0	52
15	Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft. Astrophysical Journal Letters, 2021, 916, L15.	8.3	14
16	The Effect of Stream Interaction Regions on ICME Structures Observed in Longitudinal Conjunction. Astrophysical Journal, 2021, 916, 40.	4.5	22
17	The Growth of the Commercial Sector in Space Science. Space Weather, 2021, 19, e2021SW002817.	3.7	1
18	First Simultaneous In Situ Measurements of a Coronal Mass Ejection by Parker Solar Probe and STEREO-A. Astrophysical Journal, 2021, 916, 94.	4.5	23

#	Article	IF	Citations
19	Augmenting Traditional Networks With Data Buys Can Support Science, as Well as Operations. Space Weather, 2021, 19, e2021SW002921.	3.7	0
20	Successive Coronal Mass Ejections Associated with Weak Solar Energetic Particle Events. Astrophysical Journal, 2021, 921, 6.	4.5	4
21	Comparative Analysis of the 2020 November 29 Solar Energetic Particle Event Observed by Parker Solar Probe. Astrophysical Journal, 2021, 920, 123.	4.5	12
22	Earth-affecting solar transients: a review of progresses in solar cycle 24. Progress in Earth and Planetary Science, 2021, 8, 56.	3.0	56
23	Geoscientists, Who Have Documented the Rapid and Accelerating Climate Crisis for Decades, Are Now Pleading for Immediate Collective Action. Geophysical Research Letters, 2021, 48, e2021GL096644.	4.0	3
24	Categorization of Coronal Mass Ejection-driven Sheath Regions: Characteristics of STEREO Events. Astrophysical Journal, 2021, 921, 57.	4.5	8
25	Estimating the Mean Free Paths of Energetic Protons Using Differential Intensity Spectra. Astrophysical Journal, 2021, 920, 91.	4.5	1
26	A Catalog of Interplanetary Coronal Mass Ejections Observed by Juno between 1 and 5.4 au. Astrophysical Journal, 2021, 923, 136.	4. 5	8
27	Machineâ€Learning Research in the Space Weather Journal: Prospects, Scope, and Limitations. Space Weather, 2021, 19, .	3.7	2
28	The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au. Astrophysical Journal, 2020, 897, 134.	4. 5	14
29	Suprathermal Proton Spectra at Interplanetary Shocks in 3D Hybrid Simulations. Astrophysical Journal, 2020, 897, 109.	4.5	2
30	Future Interplanetary Space Weather Assets. Space Weather, 2020, 18, e2020SW002518.	3.7	0
31	Thank You to Our 2019 Reviewers. Space Weather, 2020, 18, e2020SW002481.	3.7	0
32	Spatial Coherence of Interplanetary Coronal Mass Ejection Sheaths at 1 AU. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028002.	2.4	13
33	PROSWIFT Bill and the 2020 Space Weather Operations and Research Infrastructure Workshop From the National Academies of Sciences, Engineering, and Medicine. Space Weather, 2020, 18, e2020SW002628.	3.7	1
34	Advancing Diversity and Inclusion in United States' Space Weather and Space Physics Communities. Space Weather, 2020, 18, e2020SW002564.	3.7	2
35	A Study of a Magnetic Cloud Propagating Through Largeâ€Amplitude Alfvén Waves. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027638.	2.4	4
36	Observations of Extreme ICME Ram Pressure Compressing Mercury's Dayside Magnetosphere to the Surface. Astrophysical Journal, 2020, 889, 184.	4.5	22

#	Article	IF	Citations
37	Radial Evolution of Coronal Mass Ejections Between MESSENGER, <i>Venus Express</i> , STEREO, and L1: Catalog and Analysis. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027084.	2.4	45
38	Evolution of a Longâ€Duration Coronal Mass Ejection and Its Sheath Region Between Mercury and Earth on 9–14 July 2013. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027213.	2.4	25
39	ICME Evolution in the Inner Heliosphere. Solar Physics, 2020, 295, 1.	2.5	37
40	A Survey of Interplanetary Small Flux Ropes at Mercury. Astrophysical Journal, 2020, 894, 120.	4.5	13
41	Inconsistencies Between Local and Global Measures of CME Radial Expansion as Revealed by Spacecraft Conjunctions. Astrophysical Journal, 2020, 899, 119.	4.5	24
42	Prediction of the In Situ Coronal Mass Ejection Rate for Solar Cycle 25: Implications for Parker Solar Probe In Situ Observations. Astrophysical Journal, 2020, 903, 92.	4.5	27
43	Properties of the Sheath Regions of Coronal Mass Ejections with or without Shocks from STEREO in situ Observations near 1 au. Astrophysical Journal, 2020, 904, 177.	4.5	13
44	An Analytical Treatment for Particle Acceleration at Shocks inside Coronal Mass Ejections near 1 au. Astrophysical Journal, 2020, 905, 8.	4.5	2
45	The Role of Successive and Interacting CMEs in the Acceleration and Release of Solar Energetic Particles: Multi-viewpoint Observations. Astrophysical Journal, 2020, 901, 45.	4.5	6
46	Evolution of Coronal Mass Ejection Properties in the Inner Heliosphere: Prediction for the Solar Orbiter and Parker Solar Probe. Astrophysical Journal, 2019, 884, 179.	4.5	9
47	CME–HSS Interaction and Characteristics Tracked from Sun to Earth. Solar Physics, 2019, 294, 121.	2.5	40
48	Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses. Journal of Geophysical Research: Space Physics, 2019, 124, 812-836.	2.4	62
49	Forecasting the Structure and Orientation of Earthbound Coronal Mass Ejections. Space Weather, 2019, 17, 498-526.	3.7	65
50	Space Weather Journal: Maturation and Openâ€Access Future. Space Weather, 2019, 17, 1508-1509.	3.7	0
51	The Magnetic Morphology of Magnetic Clouds: Multi-spacecraft Investigation of Twisted and Writhed Coronal Mass Ejections. Astrophysical Journal, 2019, 870, 100.	4.5	24
52	Space Weather at Earth and in Our Solar System. , 2019, , 335-361.		1
53	Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deepâ€Space Exploration. Space Weather, 2018, 16, 289-303.	3.7	44
54	Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections. Solar Physics, 2018, 293, 1.	2.5	18

#	Article	IF	CITATIONS
55	Opening a Window on ICME-driven GCR Modulation in the Inner Solar System. Astrophysical Journal, 2018, 856, 139.	4.5	27
56	Effects in the Nearâ€Magnetopause Magnetosheath Elicited by Largeâ€Amplitude Alfvénic Fluctuations Terminating in a Field and Flow Discontinuity. Journal of Geophysical Research: Space Physics, 2018, 123, 8983-9004.	2.4	3
57	The Magnetic Field Geometry of Small Solar Wind Flux Ropes Inferred from Their Twist Distribution. Solar Physics, 2018, 293, 1.	2.5	5
58	Forecasting Periods of Strong Southward Magnetic Field Following Interplanetary Shocks. Space Weather, 2018, 16, 2004-2021.	3.7	11
59	Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission. Space Science Reviews, 2018, 214, 1.	8.1	129
60	On the Spatial Coherence of Magnetic Ejecta: Measurements of Coronal Mass Ejections by Multiple Spacecraft Longitudinally Separated by 0.01 au. Astrophysical Journal Letters, 2018, 864, L7.	8.3	47
61	Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections. , 2018, , 565-575.		0
62	The Interaction of Successive Coronal Mass Ejections: A Review. Solar Physics, 2017, 292, 1.	2.5	149
63	Statistical study of ICME effects on Mercury's magnetospheric boundaries and northern cusp region from MESSENGER. Journal of Geophysical Research: Space Physics, 2017, 122, 4960-4975.	2.4	24
64	Inferring the Heliospheric Magnetic Field Back through Maunder Minimum. Astrophysical Journal, 2017, 837, 165.	4.5	14
65	Importance of CME Radial Expansion on the Ability of Slow CMEs to Drive Shocks. Astrophysical Journal, 2017, 848, 75.	4.5	29
66	MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Subâ€Alfvénic Flow. Journal of Geophysical Research: Space Physics, 2017, 122, 9934-9951.	2.4	3
67	The Physical Processes of CME/ICME Evolution. Space Science Reviews, 2017, 212, 1159-1219.	8.1	179
68	The Interaction of Successive Coronal Mass Ejections: A Review. , 2017, , 79-115.		2
69	The Physical Processes of CME/ICME Evolution. Space Sciences Series of ISSI, 2017, , 165-225.	0.0	0
70	Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions. Journal of Geophysical Research: Space Physics, 2016, 121, 6092-6106.	2.4	58
71	Small solar wind transients at 1ÂAU: STEREO observations (2007–2014) and comparison with nearâ€Earth wind results (1995–2014). Journal of Geophysical Research: Space Physics, 2016, 121, 5005-5024.	2.4	33
72	Factors affecting the geoeffectiveness of shocks and sheaths at 1ÂAU. Journal of Geophysical Research: Space Physics, 2016, 121, 10861-10879.	2.4	63

#	Article	IF	Citations
73	Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind. Nature Communications, 2016, 7, 13001.	12.8	22
74	A small mission concept to the Sun–Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 146, 171-185.	1.6	39
7 5	Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury. Journal of Geophysical Research: Space Physics, 2015, 120, 6101-6118.	2.4	88
76	PARTICLE ACCELERATION AT LOW CORONAL COMPRESSION REGIONS AND SHOCKS. Astrophysical Journal, 2015, 810, 97.	4.5	55
77	Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. Journal of Geophysical Research: Space Physics, 2015, 120, 3328-3349.	2.4	34
78	Extreme geomagnetic disturbances due to shocks within CMEs. Geophysical Research Letters, 2015, 42, 4694-4701.	4.0	46
79	Broken Power-law Distributions from Low Coronal Compression Regions or Shocks. Journal of Physics: Conference Series, 2015, 642, 012025.	0.4	5
80	Shocks inside CMEs: A survey of properties from 1997 to 2006. Journal of Geophysical Research: Space Physics, 2015, 120, 2409-2427.	2.4	60
81	Ensemble Modeling of Successive Halo CMEs: A Case Study. Solar Physics, 2015, 290, 1207-1229.	2.5	14
82	Eruptive Prominences and Their Impact on the Earth and Our Life. Astrophysics and Space Science Library, 2015, , 433-453.	2.7	9
83	SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM. Astrophysical Journal Letters, 2014, 793, L41.	8.3	57
84	Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nature Communications, 2014, 5, 3481.	12.8	223
85	Deflected propagation of a coronal mass ejection from the corona to interplanetary space. Journal of Geophysical Research: Space Physics, 2014, 119, 5117-5132.	2.4	74
86	A statistical analysis of properties of small transients in the solar wind 2007–2009: STEREO and Wind observations. Journal of Geophysical Research: Space Physics, 2014, 119, 689-708.	2.4	51
87	A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness. Geophysical Research Letters, 2014, 41, 769-776.	4.0	54
88	CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU. Astrophysical Journal, 2014, 787, 119.	4.5	145
89	An Ensemble Study of a January 2010 Coronal Mass Ejection (CME): Connecting a Non-obvious Solar Source with Its ICME/Magnetic Cloud. Solar Physics, 2014, 289, 4173-4208.	2.5	4
90	Geoâ€effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. Journal of Geophysical Research: Space Physics, 2014, 119, 26-35.	2.4	56

#	Article	IF	CITATIONS
91	Synthesis of 3â€D Coronalâ€Solar Wind Energetic Particle Acceleration Modules. Space Weather, 2014, 12, 323-328.	3.7	23
92	Observations and Modelling of the Inner Heliosphere: Preface and Tribute to the Late Dr. Andy Breen. Solar Physics, 2013, 285, 1-7.	2.5	3
93	Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images. Solar Physics, 2013, 285, 281-294.	2.5	21
94	Assessing the Constrained Harmonic Mean Method for Deriving the Kinematics of ICMEs with a Numerical Simulation. Solar Physics, 2013, 283, 541-556.	2.5	12
95	A PLASMA Î ² TRANSITION WITHIN A PROPAGATING FLUX ROPE. Astrophysical Journal, 2013, 779, 142.	4.5	8
96	Features of the interaction of interplanetary coronal mass ejections/magnetic clouds with the Earth's magnetosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 99, 14-26.	1.6	8
97	ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS. Astrophysical Journal, 2013, 769, 45.	4.5	120
98	A planar, pressure-balanced, reconnecting structure embedded in a small solar wind transient. , 2013, , .		0
99	Small solar wind transients: Stereo-A observations in 2009. AIP Conference Proceedings, 2013, , .	0.4	2
100	THE INTERACTION OF TWO CORONAL MASS EJECTIONS: INFLUENCE OF RELATIVE ORIENTATION. Astrophysical Journal, 2013, 778, 20.	4.5	58
101	ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY. Astrophysical Journal, 2013, 777, 167.	4.5	88
102	Complex Evolution of Coronal Mass Ejections in the Inner Heliosphere as Revealed by Numerical Simulations and STEREO Observations: A Review. Proceedings of the International Astronomical Union, 2013, 8, 255-264.	0.0	2
103	Explaining fast ejections of plasma and exotic X-ray emission from the solar corona. Nature Physics, 2012, 8, 845-849.	16.7	48
104	A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS. Astrophysical Journal, 2012, 759, 103.	4.5	17
105	THE DEFLECTION OF THE TWO INTERACTING CORONAL MASS EJECTIONS OF 2010 MAY 23-24 AS REVEALED BY COMBINED IN SITU MEASUREMENTS AND HELIOSPHERIC IMAGING. Astrophysical Journal, 2012, 759, 68.	4.5	137
106	A SELF-SIMILAR EXPANSION MODEL FOR USE IN SOLAR WIND TRANSIENT PROPAGATION STUDIES. Astrophysical Journal, 2012, 750, 23.	4.5	120
107	UNDERSTANDING <i>SDO</i> /I>/AIA OBSERVATIONS OF THE 2010 JUNE 13 EUV WAVE EVENT: DIRECT INSIGHT FROM A GLOBAL THERMODYNAMIC MHD SIMULATION. Astrophysical Journal, 2012, 750, 134.	4.5	90
108	Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008 – 2010: Lessons for Future Observations of Earth-Directed CMEs. Solar Physics, 2012, 279, 497-515.	2.5	20

#	Article	IF	CITATIONS
109	STUDYING EXTREME ULTRAVIOLET WAVE TRANSIENTS WITH A DIGITAL LABORATORY: DIRECT COMPARISON OF EXTREME ULTRAVIOLET WAVE OBSERVATIONS TO GLOBAL MAGNETOHYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2011, 728, 2.	4.5	87
110	ON THE INTERNAL STRUCTURE OF THE MAGNETIC FIELD IN MAGNETIC CLOUDS AND INTERPLANETARY CORONAL MASS EJECTIONS: WRITHE VERSUS TWIST. Astrophysical Journal Letters, 2011, 738, L18.	8.3	39
111	NUMERICAL INVESTIGATION OF A CORONAL MASS EJECTION FROM AN ANEMONE ACTIVE REGION: RECONNECTION AND DEFLECTION OF THE 2005 AUGUST 22 ERUPTION. Astrophysical Journal, 2011, 738, 127.	4.5	97
112	ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO <i>STEREO </i> Dournal, 2011, 741, 34.	4.5	51
113	Numerical modeling of interplanetary coronal mass ejections and comparison with heliospheric images. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1187-1200.	1.6	46
114	Determining CME parameters by fitting heliospheric observations: Numerical investigation of the accuracy of the methods. Advances in Space Research, 2011, 48, 292-299.	2.6	15
115	TOWARD A REALISTIC THERMODYNAMIC MAGNETOHYDRODYNAMIC MODEL OF THE GLOBAL SOLAR CORONA. Astrophysical Journal, 2010, 712, 1219-1231.	4.5	79
116	Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations. Solar Physics, 2010, 267, 411-429.	2.5	78
117	Solar-Terrestrial Simulations of CMEs with a Realistic Initiation Mechanism: Case Study for Active Region 10069. AIP Conference Proceedings, 2010, , .	0.4	5
118	DETERMINING THE AZIMUTHAL PROPERTIES OF CORONAL MASS EJECTIONS FROM MULTI-SPACECRAFT REMOTE-SENSING OBSERVATIONS WITH < i>STEREO < /i>SECCHI. Astrophysical Journal, 2010, 715, 493-499.	4.5	126
119	MAPPING THE STRUCTURE OF THE CORONA USING FOURIER BACKPROJECTION TOMOGRAPHY. Astrophysical Journal, 2009, 690, 1119-1129.	4.5	20
120	Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction. Annales Geophysicae, 2009, 27, 3479-3488.	1.6	146
121	Solar – Terrestrial Simulation in the STEREO Era: TheÂ24 – 25 January 2007 Eruptions. Solar 256, 269-284.	r Physics, 2	2009, 62
122	THE INTERNAL STRUCTURE OF CORONAL MASS EJECTIONS: ARE ALL REGULAR MAGNETIC CLOUDS FLUX ROPES?. Astrophysical Journal, 2009, 695, L171-L175.	4.5	52
123	Theoretical modeling for the stereo mission. Space Science Reviews, 2008, 136, 565-604.	8.1	40
124	Observational evidence of CMEs interacting in the inner heliosphere as inferred from MHD simulations. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 598-604.	1.6	18
125	Validation of a global 3D heliospheric model with observations for the May 12, 1997 CME event. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 583-592.	1.6	15
126	Global MHD Modeling of CMEs and Related Shocks from Complex Active Regions. AIP Conference Proceedings, 2008, , .	0.4	4

#	Article	IF	CITATION
127	The August 24, 2002 coronal mass ejection: when a western limb event connects to earth. Proceedings of the International Astronomical Union, 2008, 4, 391-398.	0.0	5
128	Threeâ€dimensional MHD Simulation of the 2003 October 28 Coronal Mass Ejection: Comparison with LASCO Coronagraph Observations. Astrophysical Journal, 2008, 684, 1448-1460.	4.5	137
129	The Brightness of Density Structures at Large Solar Elongation Angles: What Is Being Observed by <i>STEREO </i> SECCHI?. Astrophysical Journal, 2008, 684, L111-L114.	4.5	34
130	Theoretical Modeling for the STEREO Mission. , 2008, , 565-604.		1
131	Numerical Investigation of the Homologous Coronal Mass Ejection Events from Active Region 9236. Astrophysical Journal, 2007, 659, 788-800.	4.5	80
132	New Physical Insight on the Changes in Magnetic Topology during Coronal Mass Ejections: Case Studies for the 2002 April 21 and August 24 Events. Astrophysical Journal, 2007, 668, L87-L90.	4.5	42
133	The Evolution of Coronal Mass Ejection Density Structures. Astrophysical Journal, 2005, 627, 1019-1030.	4.5	88
134	Numerical Simulation of the Interaction of Two Coronal Mass Ejections from Sun to Earth. Astrophysical Journal, 2005, 634, 651-662.	4.5	154
135	Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter's aurora. Journal of Geophysical Research, 2005, 110 , .	3.3	149
136	Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. Journal of Geophysical Research, 2003, 108, .	3.3	91