Bruno Cadot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3299785/publications.pdf

Version: 2024-02-01

39 1,847 papers citations

20 31
h-index g-index

47 47 docs citations

47 times ranked 2788 citing authors

#	Article	IF	CITATIONS
1	Reconstituting the Interaction Between Purified Nuclei and Microtubule Network. Methods in Molecular Biology, 2022, 2430, 385-399.	0.9	0
2	$TGF\hat{I}^2$ signaling curbs cell fusion and muscle regeneration. Nature Communications, 2021, 12, 750.	12.8	61
3	Actin on and around the Nucleus. Trends in Cell Biology, 2021, 31, 211-223.	7.9	74
4	Ctdnep1 and Eps8L2 regulate dorsal actin cables for nuclear positioning during cell migration. Current Biology, 2021, 31, 1521-1530.e8.	3.9	12
5	MUSCLE FUNCTION & Disorders, 2020, 30, S66-S67.	0.6	O
6	Science during lockdown $\hat{a} \in ``from virtual seminars to sustainable online communities. Journal of Cell Science, 2020, 133, .$	2.0	35
7	Nesprins are mechanotransducers that discriminate epithelial–mesenchymal transition programs. Journal of Cell Biology, 2020, 219, .	5.2	35
8	Nesprinâ€ 2 accumulates at the front of the nucleus during confined cell migration. EMBO Reports, 2020, 21, e49910.	4.5	39
9	Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation. ELife, 2020, 9, .	6.0	15
10	An embryonic CaVÎ^21 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Science Translational Medicine, 2019, 11, .	12.4	15
11	La signalisation TGFβ contrÃ1e la fusion cellulaire et la régénération musculaire. Les Cahiers De Myologie, 2019, , 33-34.	0.0	0
12	Nuclear positioning: A matter of life. Seminars in Cell and Developmental Biology, 2018, 82, 1-2.	5.0	2
13	NEW INSIGHTS INTO CELLULAR FUNCTIONS. Neuromuscular Disorders, 2018, 28, 588-589.	0.6	0
14	Microtubule motors involved in nuclear movement during skeletal muscle differentiation. Molecular Biology of the Cell, 2017, 28, 865-874.	2.1	43
15	Molecular motors and nuclear movements in muscle. Communicative and Integrative Biology, 2017, 10, e1319537.	1.4	1
16	Mechanotransduction at the Nuclear Envelope. Biophysical Journal, 2017, 112, 458a.	0.5	0
17	Nesprin-1α-Dependent Microtubule Nucleation from the Nuclear Envelope via Akap450 Is Necessary for Nuclear Positioning in Muscle Cells. Current Biology, 2017, 27, 2999-3009.e9.	3.9	125
18	Myofibril contraction and crosslinking drive nuclear movement to the periphery of skeletal muscle. Nature Cell Biology, 2017, 19, 1189-1201.	10.3	100

#	Article	IF	CITATIONS
19	In Vitro< l em> Differentiation of Mature Myofibers for Live Imaging. Journal of Visualized Experiments, 2017, , .	0.3	29
20	Skeletal Muscle., 2016,, 677-682.		2
21	A system to study mechanisms of neuromuscular junction development and maintenance. Development (Cambridge), 2016, 143, 2464-77.	2.5	35
22	Dynein disruption perturbs post-synaptic components and contributes to impaired MuSK clustering at the NMJ: implication in ALS. Scientific Reports, 2016, 6, 27804.	3.3	26
23	A system for studying mechanisms of neuromuscular junction development and maintenance. Journal of Cell Science, 2016, 129, e1.2-e1.2.	2.0	1
24	Pax3 and Pax7 Play Essential Safeguard Functions against Environmental Stress-Induced Birth Defects. Developmental Cell, 2015, 33, 56-66.	7.0	51
25	Moving and positioning the nucleus in skeletal muscle – one step at a time. Nucleus, 2015, 6, 373-381.	2.2	93
26	Fast, Multi-Dimensional and Simultaneous Kymograph-Like Particle Dynamics (SkyPad) Analysis. PLoS ONE, 2014, 9, e89073.	2.5	6
27	G.P.93. Neuromuscular Disorders, 2014, 24, 822-823.	0.6	0
28	MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature, 2012, 484, 120-124.	27.8	249
29	Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Reports, 2012, 13, 741-749.	4.5	111
30	The sterile alpha-motif (SAM) domain of p63 binds in vitro monoasialoganglioside (GM1) micelles. Biochemical Pharmacology, 2011, 82, 1262-1268.	4.4	21
31	Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nature Cell Biology, 2010, 12, 257-266.	10.3	390
32	Loss of Histone Deacetylase 4 Causes Segregation Defects during Mitosis of p53-Deficient Human Tumor Cells. Cancer Research, 2009, 69, 6074-6082.	0.9	36
33	NMR Structure of the p63 SAM Domain and Dynamical Properties of G534V and T537P Pathological Mutants, Identified in the AEC Syndrome. Cell Biochemistry and Biophysics, 2006, 44, 475-489.	1.8	19
34	p73-alpha is capable of inducing scotin and ER stress. Oncogene, 2004, 23, 3721-3725.	5.9	52
35	Overexpressed transglutaminase 5 triggers cell death. Amino Acids, 2004, 26, 405-8.	2.7	1
36	Transglutaminase 5 is regulated by guanine–adenine nucleotides1. Biochemical Journal, 2004, 381, 313-319.	3.7	52

Bruno Cadot

#	Article	IF	CITATIONS
37	Differential expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues. Journal of Clinical Pathology, 2001, 54, 275-280.	1.9	62
38	Patterns of specific genomic alterations associated with poor prognosis in high-grade renal cell carcinomas. Cancer Genetics and Cytogenetics, 2001, 130, 105-110.	1.0	44
39	Actin Accumulates Nesprin-2 at the Front of the Nucleus During Confined Cell Migration. SSRN Electronic Journal, 0, , .	0.4	2