
Yanqiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3299029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1006-1011.	7.1	806
2	Peroxisome proliferator-activated receptor-Â coactivator 1Â (PGC-1Â) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes and Development, 2004, 18, 157-169.	5.9	311
3	FXR, a multipurpose nuclear receptor. Trends in Biochemical Sciences, 2006, 31, 572-580.	7.5	294
4	Natural Structural Variants of the Nuclear Receptor Farnesoid X Receptor Affect Transcriptional Activation. Journal of Biological Chemistry, 2003, 278, 104-110.	3.4	236
5	A metabolic stress-inducible miR-34a-HNF4α pathway regulates lipid and lipoprotein metabolism. Nature Communications, 2015, 6, 7466.	12.8	198
6	FXR signaling in metabolic disease. FEBS Letters, 2008, 582, 10-18.	2.8	178
7	FXR Deficiency Causes Reduced Atherosclerosis in Ldlr â^'/â^' Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2316-2321.	2.4	153
8	Activation of the Farnesoid X Receptor Induces Hepatic Expression and Secretion of Fibroblast Growth Factor 21. Journal of Biological Chemistry, 2012, 287, 25123-25138.	3.4	129
9	Hepatic Hepatocyte Nuclear Factor 4α Is Essential for Maintaining Triglyceride and Cholesterol Homeostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 328-336.	2.4	128
10	Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. Journal of Clinical Investigation, 2017, 127, 4449-4461.	8.2	127
11	Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology, 2016, 64, 1072-1085.	7.3	121
12	Bile acid receptors in non-alcoholic fatty liver disease. Biochemical Pharmacology, 2013, 86, 1517-1524.	4.4	111
13	Loss of FXR Protects against Diet-Induced Obesity and Accelerates Liver Carcinogenesis in ob/ob Mice. Molecular Endocrinology, 2012, 26, 272-280.	3.7	108
14	Hepatic carboxylesterase 1 is essential for both normal and farnesoid X receptor-controlled lipid homeostasis. Hepatology, 2014, 59, 1761-1771.	7.3	104
15	Carboxylesterase 2 prevents liver steatosis by modulating lipolysis, endoplasmic reticulum stress, and lipogenesis and is regulated by hepatocyte nuclear factor 4 alpha in mice. Hepatology, 2016, 63, 1860-1874.	7.3	97
16	Identification of Novel Pathways That Control Farnesoid X Receptor-mediated Hypocholesterolemia. Journal of Biological Chemistry, 2010, 285, 3035-3043.	3.4	96
17	Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Molecular Metabolism, 2018, 9, 131-140.	6.5	85
18	SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCα transcription in hepatocytes. Journal of Lipid Research, 2003, 44, 356-368.	4.2	82

YANQIAO ZHANG

#	Article	IF	CITATIONS
19	Syndecan-1 Expression Is Regulated in an Isoform-specific Manner by the Farnesoid-X Receptor. Journal of Biological Chemistry, 2003, 278, 20420-20428.	3.4	77
20	Macrophage miR-34a Is a Key Regulator of Cholesterol Efflux and Atherosclerosis. Molecular Therapy, 2020, 28, 202-216.	8.2	75
21	Activating transcription factor 3 in immune response and metabolic regulation. Liver Research, 2017, 1, 96-102.	1.4	51
22	Integrated zwitterionic conjugated poly(carboxybetaine thiophene) as a new biomaterial platform. Chemical Science, 2015, 6, 782-788.	7.4	42
23	Aldo-keto reductase 1B7 is a target gene of FXR and regulates lipid and glucose homeostasis. Journal of Lipid Research, 2011, 52, 1561-1568.	4.2	40
24	Hepatocyte Nuclear Factor 4α Prevents the Steatosisâ€ŧoâ€NASH Progression by Regulating p53 and Bile Acid Signaling (in mice). Hepatology, 2021, 73, 2251-2265.	7.3	40
25	Hepatocyte miR-34a is a key regulator in the development and progression of non-alcoholic fatty liver disease. Molecular Metabolism, 2021, 51, 101244.	6.5	35
26	Hepatocyte ATF3 protects against atherosclerosis by regulating HDL and bile acid metabolism. Nature Metabolism, 2021, 3, 59-74.	11.9	34
27	Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4α and Protects Against Alcohol- and MCD diet-induced Liver Injury. Scientific Reports, 2016, 6, 24277.	3.3	28
28	Hepatic Forkhead Box Protein A3 Regulates ApoA-I (Apolipoprotein A-I) Expression, Cholesterol Efflux, and Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1574-1587.	2.4	27
29	Lipocalinâ€2 Protects Against Dietâ€Induced Nonalcoholic Fatty Liver Disease by Targeting Hepatocytes. Hepatology Communications, 2019, 3, 763-775.	4.3	22
30	Signal Transduction Mechanisms of Alcoholic Fatty Liver Disease: Emer ging Role of Lipin-1. Current Molecular Pharmacology, 2017, 10, 226-236.	1.5	22
31	Starvation and Feeding a High-Carbohydrate, Low-Fat Diet Regulate the Expression Sterol Regulatory Element-Binding Protein-1 in Chickens. Journal of Nutrition, 2004, 134, 2205-2210.	2.9	21
32	Hepatic Carboxylesterase 1 Is Induced by Glucose and Regulates Postprandial Glucose Levels. PLoS ONE, 2014, 9, e109663.	2.5	21
33	Global inactivation of carboxylesterase 1 (Ces1/Ces1g) protects against atherosclerosis in LdIr â^'/â^' mice. Scientific Reports, 2017, 7, 17845.	3.3	19
34	Farnesoid X Receptor Activation by Obeticholic Acid Elevates Liver Low-Density Lipoprotein Receptor Expression by mRNA Stabilization and Reduces Plasma Low-Density Lipoprotein Cholesterol in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2448-2459.	2.4	19
35	Synthesis and biological evaluations of chalcones, flavones and chromenes as farnesoid x receptor (FXR) antagonists. European Journal of Medicinal Chemistry, 2017, 129, 303-309.	5.5	15
36	Hepatocyte-specific expression of human carboxylesterase 2 attenuates nonalcoholic steatohepatitis in mice. American Journal of Physiology - Renal Physiology, 2021, 320, G166-G174.	3.4	15

Yanqiao Zhang

#	Article	IF	CITATIONS
37	Hepatocyteâ€Specific Expression of Human Carboxylesterase 1 Attenuates Dietâ€Induced Steatohepatitis and Hyperlipidemia in Mice. Hepatology Communications, 2020, 4, 527-539.	4.3	13
38	Identification of a novel function of hepatic long-chain acyl-CoA synthetase-1 (ACSL1) in bile acid synthesis and its regulation by bile acid-activated farnesoid X receptor. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 358-371.	2.4	11
39	Mechanism of the switch from NO to H2O2 in endothelium-dependent vasodilation in diabetes. Basic Research in Cardiology, 2022, 117, 2.	5.9	11
40	Hepatic Knockdown of Splicing Regulator Slu7 Ameliorates Inflammation and Attenuates Liver Injury in Ethanol-Fed Mice. American Journal of Pathology, 2018, 188, 1807-1819.	3.8	9
41	Farnesoid X receptor: Acting through bile acids to treat metabolic disorders. Drugs of the Future, 2010, 35, 635.	0.1	9
42	A naturally derived dextran–peptide vector for microRNA antagomir delivery. RSC Advances, 2015, 5, 28019-28022.	3.6	8
43	Hepatocytic Activating Transcription Factor 3 Protects Against Steatohepatitis via Hepatocyte Nuclear Factor 41±. Diabetes, 2021, 70, 2506-2517.	0.6	8
44	Hairy and enhancer of split 6 prevents hepatic lipid accumulation through inhibition of Pparg2 expression. Hepatology Communications, 2017, 1, 1085-1098.	4.3	6
45	Adipocyteâ€specific Loss of Retinoic Acid Receptor Alpha (Rarα) Exacerbates Dietâ€induced Obesity and Steatohepatitis in Mice. FASEB Journal, 2021, 35, .	0.5	0
46	Implications for Growth Differentiation Factor – 11 in Cardiovascular Disease and Metabolic Syndrome. FASEB Journal, 2018, 32, lb311.	0.5	0