Laura Galuppi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3298697/publications.pdf Version: 2024-02-01

LALIDA CALLIDDI

#	Article	IF	CITATIONS
1	Effective thickness of laminated glass beams: New expression via a variational approach. Engineering Structures, 2012, 38, 53-67.	5.3	152
2	Laminated beams with viscoelastic interlayer. International Journal of Solids and Structures, 2012, 49, 2637-2645.	2.7	109
3	Practical expressions for the design of laminated glass. Composites Part B: Engineering, 2013, 45, 1677-1688.	12.0	75
4	Enhanced Effective Thickness of multi-layered laminated glass. Composites Part B: Engineering, 2014, 64, 202-213.	12.0	74
5	The effective thickness of laminated glass plates. Journal of Mechanics of Materials and Structures, 2012, 7, 375-400.	0.6	72
6	Buckling of three-layered composite beams with viscoelastic interaction. Composite Structures, 2014, 107, 512-521.	5.8	56
7	The design of laminated glass under time-dependent loading. International Journal of Mechanical Sciences, 2013, 68, 67-75.	6.7	46
8	A homogenized model for the post-breakage tensile behavior of laminated glass. Composite Structures, 2016, 154, 600-615.	5.8	45
9	The post-breakage response of laminated heat-treated glass under in plane and out of plane loading. Composites Part B: Engineering, 2018, 147, 227-239.	12.0	42
10	The effective thickness of laminated glass: Inconsistency of the formulation in a proposal of EN-standards. Composites Part B: Engineering, 2013, 55, 109-118.	12.0	35
11	Buckling phenomena in double curved cold-bent glass. International Journal of Non-Linear Mechanics, 2014, 64, 70-84.	2.6	29
12	A homogenized analysis à la Hashin for cracked laminates under equi-biaxial stress. Applications to laminated glass. Composites Part B: Engineering, 2017, 111, 332-347.	12.0	27
13	Fractional viscoelastic characterization of laminated glass beams under time-varying loading. International Journal of Mechanical Sciences, 2021, 196, 106274.	6.7	23
14	Analytical approach à la Newmark for curved laminated glass. Composites Part B: Engineering, 2015, 76, 65-78.	12.0	19
15	Betti's Analytical Method for the load sharing in double glazed units. Composite Structures, 2020, 235, 111765.	5.8	18
16	Optimal cold bending of laminated glass. International Journal of Solids and Structures, 2015, 67-68, 231-243.	2.7	17
17	Enhanced Effective Thickness for laminated glass beams and plates under torsion. Engineering Structures, 2020, 206, 110077.	5.3	17
18	Shear coupling effects of the core in curved sandwich beams. Composites Part B: Engineering, 2015, 76, 320-331.	12.0	16

LAURA GALUPPI

#	Article	IF	CITATIONS
19	Cold-lamination-bending of glass: Sinusoidal is better than circular. Composites Part B: Engineering, 2015, 79, 285-300.	12.0	12
20	Green's functions for the load sharing in multiple insulating glazing units. International Journal of Solids and Structures, 2020, 206, 412-425.	2.7	12
21	Rheology of cold-lamination-bending for curved glazing. Engineering Structures, 2014, 61, 140-152.	5.3	11
22	A simple model for the post-breakage response of laminated glass under in-plane loading. Composite Structures, 2019, 230, 111426.	5.8	11
23	Practical expressions for the design of DGUs. The BAM approach. Engineering Structures, 2020, 221, 110993.	5.3	11
24	Effective Width of the Slab in Composite Beams with Nonlinear Shear Connection. Journal of Engineering Mechanics - ASCE, 2016, 142, .	2.9	10
25	Enhanced effective thickness model for buckling of LG beams with different boundary conditions. Glass Structures and Engineering, 2020, 5, 205-210.	1.7	10
26	The effective tensile and bending stiffness of nanotube fibers. International Journal of Mechanical Sciences, 2019, 163, 105089.	6.7	8
27	Engineered calculation of the uneven in-plane temperatures in Insulating Glass Units for structural design. Class Structures and Engineering, 2022, 7, 71-99.	1.7	8
28	Post-breakage in-plane stiffness of laminated glass: an engineering approach. Glass Structures and Engineering, 2019, 4, 421-432.	1.7	7
29	Enhanced engineered calculation of the temperature distribution in architectural glazing exposed to solar radiation. Glass Structures and Engineering, 2021, 6, 425-448.	1.7	7
30	Enhanced Effective Thickness (EET) of curved laminated glass. Annals of Solid and Structural Mechanics, 2015, 7, 71-92.	0.5	6
31	Conjugate-beam analogy for inflexed laminates. International Journal of Solids and Structures, 2020, 206, 396-411.	2.7	5
32	Cantilevered laminated glass balustrades: the Conjugate Beam Effective Thickness method—part I: the analytical model. Glass Structures and Engineering, 2021, 6, 377-395.	1.7	5
33	Biot's Variational Method to determine the thermal strain in layered glazings. International Journal of Solids and Structures, 2022, 249, 111657.	2.7	5
34	Localized contacts, stress concentrations and transient states in bent-lamination with viscoelastic adhesion. An analytical study. International Journal of Mechanical Sciences, 2015, 103, 275-287.	6.7	4
35	On the occurrence of lumped forces at corners in classical plate theories: a physically based interpretation. Journal of Mechanics of Materials and Structures, 2015, 10, 93-103.	0.6	3
36	Membrane analogy for multi-material bars under torsion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190124.	2.1	3

LAURA GALUPPI

#	Article	IF	CITATIONS
37	Determining equivalent-sectional shear modulus in torsion tests for laminated glass beams using photogrammetry method. Composite Structures, 2021, 276, 114572.	5.8	3
38	Experimental and numerical characterization of twisting response of thin glass. Glass Structures and Engineering, 2022, 7, 45-69.	1.7	3
39	Combined effects of interstitial and Laplace pressure in hot isostatic pressing of cylindrical specimens. Journal of Mechanics of Materials and Structures, 2014, 9, 51-86.	0.6	2
40	Transformable Curved Thin Glass Greenhouse. International Journal of Structural Glass and Advanced Materials Research, 2018, 2, 198-217.	0.4	2
41	Cantilevered laminated glass balustrades: the Conjugate Beam Effective Thickness method—part II: comparison and application. Glass Structures and Engineering, 2022, 7, 23-43.	1.7	2

Erratum to $\hat{a} \in \infty$ Practical expressions for the design of DGUs. The BAM approach $\hat{a} \in (Engineering)$ Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 5