Timothy John Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3298221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resources Research, 2012, 48, .	4.2	235
2	Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfallâ€runoff models. Water Resources Research, 2016, 52, 1820-1846.	4.2	136
3	Watersheds may not recover from drought. Science, 2021, 372, 745-749.	12.6	113
4	Equifinality and Flux Mapping: A New Approach to Model Evaluation and Process Representation Under Uncertainty. Water Resources Research, 2019, 55, 8922-8941.	4.2	57
5	Many Commonly Used Rainfallâ€Runoff Models Lack Long, Slow Dynamics: Implications for Runoff Projections. Water Resources Research, 2020, 56, e2019WR025286.	4.2	54
6	Nonlinear timeâ€series modeling of unconfined groundwater head. Water Resources Research, 2014, 50, 8330-8355.	4.2	53
7	Multiple stable states in hydrological models: An ecohydrological investigation. Water Resources Research, 2009, 45, .	4.2	33
8	Can we manage groundwater? A method to determine the quantitative testability of groundwater management plans. Water Resources Research, 2016, 52, 4863-4882.	4.2	27
9	Analytical methods for ecosystem resilience: A hydrological investigation. Water Resources Research, 2012, 48, .	4.2	25
10	Top-down groundwater hydrograph time-series modeling for climate-pumping decomposition. Hydrogeology Journal, 2015, 23, 819-836.	2.1	23
11	The good, the bad and the outliers: automated detection of errors and outliers from groundwater hydrographs. Hydrogeology Journal, 2018, 26, 371-380.	2.1	23
12	Statistical Interpolation of Groundwater Hydrographs. Water Resources Research, 2018, 54, 4663-4680.	4.2	22
13	Groundwater surface mapping informs sources of catchment baseflow. Hydrology and Earth System Sciences, 2015, 19, 1599-1613.	4.9	21
14	On the structural limitations of recursive digital filters for base flow estimation. Water Resources Research, 2016, 52, 4745-4764.	4.2	20
15	Decomposing groundwater head variations into meteorological and pumping components: a synthetic study. Hydrogeology Journal, 2015, 23, 1431-1448.	2.1	19
16	Error propagation in computer models: analytic approaches, advantages, disadvantages and constraints. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2971-2985.	4.0	17
17	Estimating aquifer properties using groundwater hydrograph modelling. Hydrological Processes, 2015, 29, 5424-5437.	2.6	16
18	AWAPer: An R package for area weighted catchment daily meteorological data anywhere within Australia. Hydrological Processes, 2020, 34, 1301-1306.	2.6	15

TIMOTHY JOHN PETERSON

#	Article	IF	CITATIONS
19	Multiple hydrological attractors under stochastic daily forcing: 1. Can multiple attractors exist?. Water Resources Research, 2014, 50, 2993-3009.	4.2	14
20	Multiple hydrological attractors under stochastic daily forcing: 2. Can multiple attractors emerge?. Water Resources Research, 2014, 50, 3010-3029.	4.2	13
21	A synthetic study to evaluate the utility of hydrological signatures for calibrating a base flow separation filter. Water Resources Research, 2016, 52, 6526-6540.	4.2	13
22	Impacts of Hydrological Alterations on Water Quality. , 2017, , 101-126.		8
23	Joint Estimation of Gross Recharge, Groundwater Usage, and Hydraulic Properties within HydroSight. Ground Water, 2019, 57, 860-876.	1.3	8
24	Estimation of the environmental risk of regulated river flow. Journal of Hydrology, 2014, 517, 74-82.	5.4	5
25	Nonâ€Stationary Influences of Largeâ€Scale Climate Drivers on Low Flow Extremes in Southeast Australia. Water Resources Research, 2022, 58, .	4.2	4
26	Water table depth data for use in modelling residential building ground-coupled heat transfer. Cleaner Engineering and Technology, 2021, 3, 100096.	4.0	3
27	A One Stage Damage Detection Technique Using Spectral Density Analysis and Parallel Genetic Algorithms. Key Engineering Materials, 0, 558, 1-11.	0.4	1