List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3296667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	KDM1A inactivation causes hereditary food-dependent Cushing syndrome. Genetics in Medicine, 2022, 24, 374-383.	2.4	27
2	Identification of three clinical neurofibromatosis 1 subtypes: Latent class analysis of a series of 1351 patients. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 739-743.	2.4	0
3	RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia. Leukemia, 2022, 36, 1237-1252.	7.2	12
4	Redifferentiating Effect of Larotrectinib in <i>NTRK</i> -Rearranged Advanced Radioactive-lodine Refractory Thyroid Cancer. Thyroid, 2022, 32, 594-598.	4.5	19
5	Transcriptome in paraffin samples for the diagnosis and prognosis of adrenocortical carcinoma. European Journal of Endocrinology, 2022, 186, 607-617.	3.7	2
6	Noninvasive Prenatal Diagnosis of a Paternally Inherited <i>MEN1</i> Pathogenic Splicing Variant. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1367-e1373.	3.6	1
7	Natural history of NF1 c.2970_2972del p.(Met992del): confirmation of a low risk of complications in a longitudinal study. European Journal of Human Genetics, 2022, 30, 291-297.	2.8	5
8	PD-1 Blockade in Solid Tumors with Defects in Polymerase Epsilon. Cancer Discovery, 2022, 12, 1435-1448.	9.4	28
9	VEGF and VEGFR family members are expressed by neoplastic cells of NF1-associated tumors and may play an oncogenic role in malignant peripheral nerve sheath tumor growth through an autocrine loop. Annals of Diagnostic Pathology, 2022, 60, 151997.	1.3	2
10	COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology, 2021, 74, 168-184.	3.7	302
11	Severe Phenotype in Patients with Large Deletions of NF1. Cancers, 2021, 13, 2963.	3.7	15
12	Prenatal features and neonatal management of severe hyperparathyroidism caused by the heterozygous inactivating calcium-sensing receptor variant, Arg185Gln: A case report and review of the literature. Bone Reports, 2021, 15, 101097.	0.4	3
13	Malignant histiocytosis with a Langerhans cell subtype: A report on the diagnostic and therapeutic challenge. Blood Cells, Molecules, and Diseases, 2021, 92, 102623.	1.4	0
14	Chemoresistant pleomorphic rhabdomyosarcoma: whole exome sequencing reveals underlying cancer predisposition and therapeutic options. Journal of Medical Genetics, 2020, 57, 104-108.	3.2	16
15	Proteome analysis of formalinâ€fixed paraffinâ€embedded colorectal adenomas reveals the heterogeneous nature of traditional serrated adenomas compared to other colorectal adenomas. Journal of Pathology, 2020, 250, 251-261.	4.5	6
16	NF1-like optic pathway gliomas in children: clinical and molecular characterization of this specific presentation. Neuro-Oncology Advances, 2020, 2, i98-i106.	0.7	4
17	BRAF inhibitor resistance of melanoma cells triggers increased susceptibility to natural killer cell-mediated lysis. , 2020, 8, e000275.		11
18	Identification of <i>TP53</i> mutated group using a molecular and immunohistochemical classification of endometrial carcinoma to improve prognostic evaluation for adjuvant treatments. International Journal of Gynecological Cancer, 2020, 30, 640-647.	2.5	13

#	Article	IF	CITATIONS
19	Should we genotype the sperm of fathers from patients with â€~de novo' mutations?. European Journal of Endocrinology, 2020, 182, C1-C3.	3.7	13
20	Phosphorylation of Merlin by Aurora A kinase appears necessary for mitotic progression. Journal of Biological Chemistry, 2019, 294, 12992-13005.	3.4	7
21	One NF1 Mutation may Conceal Another. Genes, 2019, 10, 633.	2.4	5
22	High Positive Correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF Gene Cluster Overexpression in Multi-Tumor Types Suggest Deregulated Activation of an ANRIL–ARF Bidirectional Promoter. Non-coding RNA, 2019, 5, 44.	2.6	21
23	BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nature Communications, 2019, 10, 348.	12.8	105
24	UMD-MEN1 Database: An Overview of the 370 MEN1 Variants Present in 1676 Patients From the French Population. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 753-764.	3.6	39
25	<i>NF1</i> mutations identify molecular and clinical subtypes of lung adenocarcinomas. Cancer Medicine, 2019, 8, 4330-4337.	2.8	14
26	The NRF2 transcriptional target NQO1 has low mRNA levels in TP53-mutated endometrial carcinomas. PLoS ONE, 2019, 14, e0214416.	2.5	10
27	EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6075-6080.	7.1	42
28	Proposition of adjustments to the ACMGâ€AMP framework for the interpretation of <i>MEN1</i> missense variants. Human Mutation, 2019, 40, 661-674.	2.5	21
29	McCune Albright syndrome is a genetic predisposition to intraductal papillary and mucinous neoplasms of the pancreas associated pancreatic cancer in relation with GNAS somatic mutation – a case report. Medicine (United States), 2019, 98, e18102.	1.0	7
30	"MPNST Epigeneticsâ€â€"Letter. Molecular Cancer Research, 2019, 17, 2139-2139.	3.4	1
31	Combination of the MEK Inhibitor Trametinib and Pyrvinium Pamoate Efficiently Targets RAS Pathway-Mutated Acute Myeloid Leukemia in Preclinical Models. Blood, 2019, 134, 2671-2671.	1.4	0
32	Abstract 4955: Impact of PD-1, PD-L1 and EBI3 on prognosis in a cohort of localized high grade undifferentiated pleomorphic sarcoma patients. , 2019, , .		0
33	Neurofibromatosis type 2 French cohort analysis using a comprehensive NF2 molecular diagnostic strategy. Neurochirurgie, 2018, 64, 335-341.	1.2	6
34	Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro-Oncology, 2018, 20, 917-929.	1.2	48
35	Involvement of Aryl hydrocarbon receptor in myelination and in human nerve sheath tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1319-E1328.	7.1	27
36	Detection and monitoring of circulating tumor DNA in adrenocortical carcinoma. Endocrine-Related Cancer, 2018, 25, L13-L17.	3.1	22

ERIC PASMANT

#	Article	IF	CITATIONS
37	Humanized Mouse Model to Study Type 1 Diabetes. Diabetes, 2018, 67, 1816-1829.	0.6	20
38	BRCA2 Loss-of-Function and High Sensitivity to Cisplatin-Based Chemotherapy in a Patient With a Pleomorphic Soft Tissue Sarcoma: Effect of Genomic Medicine. American Journal of the Medical Sciences, 2018, 356, 404-407.	1.1	5
39	Abstract 5511: Characterization of molecular and functional consequences of somaticNF1mutations in non-small cell lung cancers. , 2018, , .		0
40	Abstract 4609: High-grade TP53-mutated endometrial carcinomas have decreased NRF2 antioxidant activity. , 2018, , .		0
41	Primary giant cell tumor of the common bile duct: No mutation <i>H3F3A</i> found. Pathology International, 2017, 67, 225-227.	1.3	0
42	Confirmation of mutation landscape of NF1â€associated malignant peripheral nerve sheath tumors. Genes Chromosomes and Cancer, 2017, 56, 421-426.	2.8	54
43	Familial small-intestine carcinoids: Chromosomal alterations and germline inositol polyphosphate multikinase sequencing. Digestive and Liver Disease, 2017, 49, 98-102.	0.9	9
44	Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on <i>BRAF</i> V600E Melanoma Lines with Vemurafenib. Cancer Immunology Research, 2017, 5, 582-593.	3.4	17
45	Calling Chromosome Alterations, DNA Methylation Statuses, and Mutations in Tumors by Simple Targeted Next-Generation Sequencing. Journal of Molecular Diagnostics, 2017, 19, 776-787.	2.8	7
46	Synovial Sarcomas Do Not Show H3K27 Trimethylation Loss Using Immunohistochemistry. American Journal of Surgical Pathology, 2017, 41, 283-285.	3.7	5
47	Identification by FFPE RNAâ€Seq of a new recurrent inversion leading to <i>RBM10â€TFE3</i> fusion in renal cell carcinoma with subtle <i>TFE3</i> breakâ€apart FISH pattern. Genes Chromosomes and Cancer, 2016, 55, 541-548.	2.8	32
48	<i>SETD2</i> and <i>DNMT3A</i> screen in the Sotos-like syndrome French cohort. Journal of Medical Genetics, 2016, 53, 743-751.	3.2	54
49	Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. British Journal of Cancer, 2016, 114, 1395-1404.	6.4	75
50	Expression of <i>ANRIL</i> –Polycomb Complexes– <i>CDKN2A/B/ARF</i> Genes in Breast Tumors: Identification of a Two-Gene (<i>EZH2/CBX7</i>) Signature with Independent Prognostic Value. Molecular Cancer Research, 2016, 14, 623-633.	3.4	84
51	Neurofibromatosis Type 1 Molecular Diagnosis: The RNA Point of View. EBioMedicine, 2016, 7, 21-22.	6.1	3
52	Copy number variants and rasopathies: germline KRAS duplication in a patient with syndrome including pigmentation abnormalities. Orphanet Journal of Rare Diseases, 2016, 11, 101.	2.7	7
53	High specificity and sensitivity of NRAS Q61R immunohistochemistry (IHC) in melanomas. Journal of the American Academy of Dermatology, 2016, 74, 572-573.	1.2	6
54	RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget, 2016, 7, 38892-38907.	1.8	116

#	Article	IF	CITATIONS
55	Dual mTORC1/2 inhibition induces anti-proliferative effect in NF1-associated plexiform neurofibroma and malignant peripheral nerve sheath tumor cells. Oncotarget, 2016, 7, 35753-35767.	1.8	46
56	Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes and Development, 2015, 29, 2547-2562.	5.9	77
57	NF1 single and multi-exons copy number variations in neurofibromatosis type 1. Journal of Human Genetics, 2015, 60, 221-224.	2.3	15
58	Chaperoning 5S RNA assembly. Genes and Development, 2015, 29, 1432-1446.	5.9	54
59	Unraveling the intrafamilial correlations and heritability of tumor types in MEN1: a Groupe d'étude des Tumeurs Endocrines study. European Journal of Endocrinology, 2015, 173, 819-826.	3.7	29
60	SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene, 2015, 34, 631-638.	5.9	47
61	Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations?. European Journal of Human Genetics, 2015, 23, 596-601.	2.8	97
62	Uveal melanoma hepatic metastases mutation spectrum analysis using targeted next-generation sequencing of 400 cancer genes. British Journal of Ophthalmology, 2015, 99, 437-439.	3.9	31
63	RAS MAPK inhibitors deregulation in leukemia. Oncoscience, 2015, 2, 930-931.	2.2	4
64	PRC2 Subunits Are Tumor Suppressors in NF1-Deficient Solid Tumors. Cancer Discovery, 2014, 4, 1114.2-1114.	9.4	0
65	The Activation of the WNT Signaling Pathway Is a Hallmark in Neurofibromatosis Type 1 Tumorigenesis. Clinical Cancer Research, 2014, 20, 358-371.	7.0	44
66	Mutations in <i>SETD2</i> cause a novel overgrowth condition. Journal of Medical Genetics, 2014, 51, 512-517.	3.2	96
67	Immunohistochemistry versus next-generation sequencing for the routine detection of BRAF V600E mutation in melanomas. Human Pathology, 2014, 45, 1983-1984.	2.0	8
68	PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature, 2014, 514, 247-251.	27.8	386
69	Abstract LB-79: PRC2 loss amplifies Ras-driven transcription and sensitizes cancers to bromodomain inhibitor-based combination therapies. , 2014, , .		0
70	MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis. BMC Genomics, 2013, 14, 473.	2.8	46
71	Relevance of MPNST cell lines as models for NF1 associated-tumors. Journal of Neuro-Oncology, 2013, 114, 353-355.	2.9	5
72	<i>NF1</i> Molecular Characterization and Neurofibromatosis Type I Genotype-Phenotype Correlation: The French Experience. Human Mutation, 2013, 34, 1510-1518.	2.5	140

#	Article	IF	CITATIONS
73	Abstract PR15: SUZ12: A novel tumor suppressor and potential biomarker for efficacy of BRD4 inhibition. Cancer Research, 2013, 73, PR15-PR15.	0.9	2
74	Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Human Molecular Genetics, 2012, 21, 5397-5405.	2.9	126
75	First description of ABCB4 gene deletions in familial low phospholipid-associated cholelithiasis and oral contraceptives-induced cholestasis. European Journal of Human Genetics, 2012, 20, 277-282.	2.8	42
76	Neurofibromatosis type 1: from genotype to phenotype. Journal of Medical Genetics, 2012, 49, 483-489.	3.2	133
77	Two independent de novo mutations as a cause for neurofibromatosis type 1 and Noonan syndrome in a single family. American Journal of Medical Genetics, Part A, 2012, 158A, 2290-2291.	1.2	4
78	Review and update of <i>SPRED1</i> mutations causing legius syndrome. Human Mutation, 2012, 33, 1538-1546.	2.5	81
79	Characterization of the nonallelic homologous recombination hotspot PRS3 associated with type-3 <i>NF1</i> deletions. Human Mutation, 2012, 33, 372-383.	2.5	28
80	Modifier Genes in NF1. , 2012, , 269-285.		1
81	<i>ANRIL</i> , a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB Journal, 2011, 25, 444-448.	0.5	413
82	Identification of Genes Potentially Involved in the Increased Risk of Malignancy in NF1-Microdeleted Patients. Molecular Medicine, 2011, 17, 79-87.	4.4	46
83	A severe neonatal presentation of factor II deficiency. European Journal of Haematology, 2011, 87, 464-466.	2.2	6
84	Different sized somatic NF1 locus rearrangements in neurofibromatosisÂ1-associated malignant peripheral nerve sheath tumors. Journal of Neuro-Oncology, 2011, 102, 341-346.	2.9	9
85	Role of Noncoding RNA ANRIL in Genesis of Plexiform Neurofibromas in Neurofibromatosis Type 1. Journal of the National Cancer Institute, 2011, 103, 1713-1722.	6.3	106
86	NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Human Mutation, 2010, 31, E1506-E1518.	2.5	208
87	Differential Expression of <i>CCN1</i> / <i>CYR61</i> , <i>CCN3/NOV</i> , <i>CCN4/WISP1</i> , and <i>CCN5/WISP2</i> in Neurofibromatosis Type 1 Tumorigenesis. Journal of Neuropathology and Experimental Neurology, 2010, 69, 60-69.	1.7	16
88	Unraveling the genetic predisposition of ribavirin-induced anaemia. Journal of Hepatology, 2010, 53, 971-973.	3.7	4
89	VKORC1 and CYP2C9 genetic polymorphisms in hepatic or portal vein thrombosis. Thrombosis Research, 2010, 126, e134-e136.	1.7	8
90	Unravelling the genetic basis of variable clinical expression in neurofibromatosis 1. Human Molecular Genetics, 2009, 18, 2768-2778.	2.9	129

#	Article	IF	CITATION
91	SPRED1 germline mutations caused a neurofibromatosis type 1 overlapping phenotype. Journal of Medical Genetics, 2009, 46, 425-430.	3.2	103
92	Detection and Characterization of NF1 Microdeletions by Custom High Resolution Array CGH. Journal of Molecular Diagnostics, 2009, 11, 524-529.	2.8	31
93	SPRED1 disorder and predisposition to leukemia in children. Blood, 2009, 114, 1131-1131.	1.4	40
94	Characterization of a 7.6-Mb germline deletion encompassing the NF1 locus and about a hundred genes in an NF1 contiguous gene syndrome patient. European Journal of Human Genetics, 2008, 16, 1459-1466.	2.8	30
95	A natural variant with a point mutation resulting in a homozygous Arg to His substitution at position 388 in prothrombin. Haematologica, 2008, 93, 799-800.	3.5	3
96	Cardio-facio-cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype phenotype relationships and overlap with Costello syndrome. Journal of Medical Genetics, 2007, 44, 763-771.	3.2	221
97	Characterization of a Germ-Line Deletion, Including the Entire <i>INK4/ARF</i> Locus, in a Melanoma-Neural System Tumor Family: Identification of <i>ANRIL</i> , an Antisense Noncoding RNA Whose Expression Coclusters with <i>ARF</i> . Cancer Research, 2007, 67, 3963-3969.	0.9	582